o o o o o o o o o o	o o o o o o o o o o			• • • • • • • • •
o o o o o o o o o o	• • • • • • • • • • •			• • • • • • • • •
o o o o o o o o o o	• • • • • • • • • • •		o o o o o o o	• • • • • • • • •
o o o o o o o o o o	• • • • • • • • • • •		o o o o o o o	• • • • • • • • •
o o o o o o o o o o	• • • • • • • • • • •		o o o o o o o	• • • • • • • • •
	GREJJ IN			
	КГКЛ°А №1 °1 №1 Т			
・ ショメード しょい・ ト にょ		EGRAL C		
• • • • • • • • • • • • • • • • • • •			o o o o o o o	o o o o o o o
• • • • • • • • • • • • • • • • • • •			• • • • • • • •	• • • • • • • • •
• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · ·	• • • • • • •	• • • • • • • • •
BASED ON ARXIV:2403	.19742 WITH J. HENN,	J. MICZAJKA, T. PERA	RO, Y. XU, Y. Z	HANG°°°°°°
o o o o o o o o o o o o o o o o o o o 	• • • • • • • • • •	· · · · · · · · · · · · · · ·	• • • • • • • • • •	• • • • • • • • • •
• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · ·	• • • • • • •	• • • • • • • • •
• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · ·	• • • • • • •	• • • • • • • • •
• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · ·	• • • • • • •	• • • • • • • •
• • • • • • • • • • • • • • • • • • •	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	• • • • • • •	• • • • • • • • •
			o o o o o o o	• • • • • • • • • •
		· · · · · · · · · · · · ·	o o o o o o o	• • • • • • • • • •
		· · · · · · · · · · · ·	• • • • • • •	• • • • • • • • •
		· · · · · · · · · · · · ·	o o o o o o o	• • • • • • • • • •
		· · · · · · · · · · · · ·	o o o o o o o	• • • • • • • • • •
	LOOPFES	Ť XXVII°°°°°°°°	• • • • • • •	• • • • • • • • •
			$\downarrow \star \downarrow$	
		S, TX ° ° ° ° ° ° °	* *	erc
$\int \Delta_p \Delta_q \ge \frac{1}{2} t$		· · · · · · · · · · · · · · · · · · ·	* *	
	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	* *	
MAX-PLANCK-INSTITUT	••••••••••••••••••••••••••••••••••••••	l, 2024∘ • • • • •		European Research Council
FUR PHYSIK				Established by the European Commission

KEY MESSAGE

Can evaluate six-point Feynman integrals at high precision within a few minutes by solving their canonical DEs.

High energy physics has entered the precision era.

 Measurements of observables for many LHC processes are now available at 1% precision

On theory side, one bottleneck are reliable and fast evaluations of
 two-loop Feynman integrals

TWO-LOOP FEYNMAN INTEGRALS

 State-of-the-art: two-loop five-point Feynman integrals (five on-shell legs, four on-shell + one off-shell leg, one or two massive propagtors)

[Gehrmann, Henn, Lo Presti '18; Abreu, Dixon, Herrmann, Page, Zeng '18; Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia '18; Abreu, Ita, Moriello, Page, Tschernow, Zeng '20; Chicherin, Sotnikov, '20; Abreu, Ita, Page, Tschernow '21; Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia '23; Badger, Becchetti, Cahubey, Marzucca '23; Febres Cordero, Figueiredo, Kraus, Page, Reina '23]

[cf. talk by Kraus]

- Very little is known about **two-loop six-point processes** in general theories
- Phenomenologically interesting: 4-jet production @ LHC
- Theoretically interesting:
 - Analytic structure of QCD function space
 - Wilson loops with Lagrangian insertion

PLANAR TWO-LOOP SIX-POINT INTEGRAL FAMILIES

4

PLANAR TWO-LOOP SIX-POINT INTEGRAL FAMILIES

NOTATION AND KINEMATICS

 $I^{d_0}[a_1, \dots, a_{13}] = e^{2\epsilon\gamma_E} \int \frac{\mathsf{d}^{d_0 - 2\epsilon} l_1 \mathsf{d}^{d_0 - 2\epsilon} l_2}{i\pi^{(d_0 - 2\epsilon)}} \frac{1}{D_1^{a_1} \dots D_{13}^{a_{13}}}$ $D_1 = l_1^2, D_2 = (l_1 + p_1)^2, \dots, D_{13} = (l_1 + l_2)^2 \qquad a_i \in \mathbb{Z}$

External momenta:

$$p_i^2 = 0, \quad i = 1, \dots, 6$$
 $\sum_{i=1}^6 p_i = 0$ $p_i \in \mathbb{R}^{D_{\text{ext}}}$

NOTATION AND KINEMATICS

• For $D_{ext} > 4$, nine independent Mandelstam invariants

$$\vec{v} = \{s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{61}, s_{123}, s_{234}, s_{345}\}$$

 $s_{ij} = (p_i + p_j)^2, \qquad s_{ijk} = (p_i + p_j + p_k)^2$

• For $D_{ext} = 4$, Gram determinant constraint

$$0 = G(p_1, p_2, p_3, p_4, p_5) = \det(p_i \cdot p_j), \qquad 1 \le i, j \le 5$$
$$= s_{12} s_{23}^2 s_{34} s_{56} + (86 \text{ terms})$$

INTEGRATION VIA DIFFERENTIATION

[Smirnov, Petukhov '10]

- Can get value of a function by integrating its first derivatives along some path!
 - 1) Integration by parts (IBP): family is spanned by finite number of basis elements [Chetyrkin, Tkachov '81; Laporta '00]

$$I^{d_0}[\vec{a}] = \vec{C} \cdot \vec{I}_{\text{master}}$$
finite basis

2) Derivatives of an integral land in the same family!

INTEGRATION VIA DIFFERENTIATION

- Can get value of a function by integrating its first derivatives along some path!
 - 1) Integration by parts (IBP): family is spanned by finite number of basis elements [Chetyrkin, Tkachov '81; Laporta '00]

$$I^{d_0}[\vec{a}] = \vec{C} \cdot \vec{I}_{\text{master}}$$

2) Derivatives of an integral land in the same family!

$$\Rightarrow \frac{d\vec{I}}{master} = dM(\epsilon, \vec{v}) \cdot \vec{I}master$$
$$= d = \sum dv_k \partial_{v_k}$$

[Kotikov '91, Remiddi '97]

[Smirnov, Petukhov '10]

 $d\vec{I}_{can} = \epsilon \, dA(\vec{v}) \cdot \vec{I}_{can}$

A CANONICAL BASIS

We are looking for a **canonical basis**:

Alphabet:

[Henn '13]

There is no (efficient) algorithmic way at two loops.

However, we can recycle one-loop insights to some extent...

INGREDIENT 1: N-GONS IN N DIMENSIONS

• At one loop, know how to construct UT integrals for arbitrary # of points:

INGREDIENT 2: DIMENSION-SHIFT IDENTITIES

• Obvious from Schwinger Parametrization: $I \propto \int dx_1 \dots dx_k x^{\nu-1} \mathcal{U}^{-D/2} \exp(-\mathcal{F}/\mathcal{U}) = \int dx_1 \dots dx_k x^{\nu-1} \mathcal{U} \mathcal{U}^{-(D+2)/2} \exp(-\mathcal{F}/\mathcal{U})$ • E.g. $4 - 2\epsilon = 4 - 2\epsilon + 6 - 2\epsilon +$

Pentagon-Triangle

Hexagon-Bubble

Are UT integrals!

Pentagon-Triangle

Double-Box

But need 6 more...

Pentagon-Triangle

Hexagon-Bubble

Double-Box

Found 6 more by using Gram determinants with loop momenta as numerators and insisting on definite parity behavior.

DIFFERENTIAL EQUATION BLOCKS IN CANONICAL FORM

15

SPEED UP CALCULATION BY WORKING OVER FINITE FIELD

Analytical: High cost of time and memory!

Evaluate over finite field and reconstruct rational functions only at the end!

 $\mathcal{O}(???) \rightarrow \mathcal{O}(40h \text{ per entry})$

[von Manteuffel, Schabinger '15] We use FiniteFlow [Peraro '19]

SPEED UP CALCULATION BY WORKING OVER FINITE FIELD

If we know alphabet $\{\log W_j\}$ a priori: Only have to fit the rational entries of the matrices c_i

 $\mathcal{O}(\text{years}) \rightarrow \mathcal{O}(\text{hours})$

[Abreu, Page, Zeng '19]

TWO-LOOP ALPHABET LETTERS

How to find the alphabet $\mathbb{A} = \{W_i\}$?

- Study of singularities of Feynman integrals: Landau analysis [Bjorken; Landau; Nakanishi '59]
- Predicts the components of the Landau variety, i.e. the algebraic variety in kinematic space on which singularities may lie

recent progress: [Fevola, Mizera, Telen '23,'24] [Helmer, Papathanasiou, Tellander '24] [He, Jiang, Liu, Yang '23; Jiang, Liu, Xu, Yang '24]

TWO-LOOP ALPHABET LETTERS

- How to find the alphabet $\mathbb{A} = \{W_i\}$?
- Study of singularities of Feynman integrals: Landau analysis [Bjorken; Landau; Nakanishi '59]
- Predicts the components of the Landau variety, i.e. the algebraic variety in kinematic space on which singularities may lie

recent progress: [Fevola, Mizera, Telen '23,'24] [Helmer, Papathanasiou, Tellander '24] [He, Jiang, Liu, Yang '23; Jiang, Liu, Xu, Yang '24]

Output of this analysis:

$$A_{\text{even}} = \{s_{12}, s_{23}, \dots, s_{12} - s_{123}, \dots\}$$
93 polynomial letters
$$\{\sqrt{Q_i}\} = \{\sqrt{\lambda(s_{12}, s_{34}, s_{56})}, \dots\}$$
21 square root letters

17

TWO-LOOP ALPHABET LETTERS

• But we know from experience, that there are also "odd" letters:

$$W_{odd} = \frac{P - \sqrt{Q}}{P + \sqrt{Q}} \quad \text{where} \quad \begin{array}{l} Q \in \{Q_i\} \cup \{Q_i Q_j\} \\ P \text{ is polynomial in } v_i \end{array}$$

TWO-LOOP ALPHABET LETTERS

• But we know from experience, that there are also "odd" letters:

$$W_{odd} = \frac{P - \sqrt{Q}}{P + \sqrt{Q}} \quad \text{where} \quad \begin{array}{l} Q \in \{Q_i\} \cup \{Q_i Q_j\} \\ P \text{ is polynomial in } v_i \end{array}$$

• Consistent with Landau analysis, if: [Heller, von Manteuffel, Schabinger '19]

$$(P - \sqrt{Q})(P + \sqrt{Q}) = c \prod_{i} W_{i}^{e_{i}}, \quad W_{i} \in \mathbb{A}_{even}$$

1) ANSATZ FOR THE POLYNOMIAL

 $P(\vec{v})^2 = Q(\vec{v}) + c \prod W_i^{e_i}$

$\Delta_p \cdot \Delta_q \ge \frac{1}{2} t$

• e.g. for $\sqrt{Q} = r_{27}^{i}$, i.e. a degree 3 ansatz, assume *P* has coefficients in $\{-2, ..., 2\}$:

$$P(\vec{v}) \approx 5^{\binom{9+3-1}{3}} \approx 10^{115}$$

2) ANSATZ FOR THE PRODUCT

REFINE THE PRODUCT ANSATZ! Unpublished [AM, Miczajka '24]

Assume that: $P(\vec{v})^2 = Q(\vec{v}) + W_i(\vec{v}) \cdot (\dots)$ for some particular letter W_i .

Then, for every $\vec{v}_0 \in \mathbb{Q}^9$ such that $W_i(\vec{v}_0) = 0$, it follows

$$\sqrt{Q(\vec{v}_0)} \in \mathbb{Q}.$$

Hence, we can filter through the even letters to find a reduced set for any given Q.

REFINE THE PRODUCT ANSATZ! Unpublished [AM, Miczajka '24]

Assume that: $P(\vec{v})^2 = Q(\vec{v}) + W_i(\vec{v}) \cdot (\dots)$ for some particular letter W_i .

Then, for every $\vec{v}_0 \in \mathbb{Q}^9$ such that $W_i(\vec{v}_0) = 0$, it follows

$$\sqrt{Q(\vec{v}_0)} \in \mathbb{Q}.$$

Hence, we can filter through the even letters to find a reduced set for any given Q.

Example:

$$\sqrt{s_{12}^2 + s_{34}^2 + s_{56}^2 - 2s_{12}s_{34} - 2s_{12}s_{56} - 2s_{34}s_{56}} = \sqrt{(s_{34} - s_{56})^2} \in \mathbb{Q}.$$

CONJECTURED 2-LOOP HEXAGON ALPHABET

- Started with 93 even letters from subsectors and maximal cut
- Using the algorithm, we construct a total of **109** odd letters
 - out of these, 94 of them have a single square root,
 15 have two square roots
 - 89 odd letters can be matched to known data from two-loop five-point and one-loop six-point alphabets; 20 letters are completely new

Together with the **21** square roots, we find an alphabet with 93+21+109=**223** letters.

- Usually: Express it in terms of known functions
- Here: it might be possible to express the result in terms of Li₄, Li_{2,2}, but most likely inefficient for evaluations!

- Usually: Express it in terms of known functions
- Here: it might be possible to express the result in terms of Li₄, Li_{2,2}, but most likely inefficient for evaluations!
- Instead, use one-fold integral representation along some path!
 - Step 1: Analytically solve the DE up to weight 2. Step 2: Write weight 3, 4 solution as integrals over weight 2:

$$\vec{I}^{(3)}(\vec{v}_1) = \vec{I}^{(3)}(\vec{v}_0) + \int_0^1 dt \ \frac{\partial A}{\partial t} \cdot \vec{I}^{(2)}(t)$$
$$\vec{I}^{(4)}(\vec{v}_1) = \vec{I}^{(4)}(\vec{v}_0) + \int_0^1 dt \ \frac{\partial A}{\partial t} \cdot \vec{I}^{(3)}(t)$$

- Usually: Express it in terms of known functions
- Here: it might be possible to express the result in terms of Li₄, Li_{2,2}, but most likely inefficient for evaluations!
- Instead, use one-fold integral representation along some path!
 - Step 1: Analytically solve the DE up to weight 2. Step 2: Write weight 3, 4 solution as integrals over weight 2:

$$\vec{I}^{(3)}(\vec{v}_1) = \vec{I}^{(3)}(\vec{v}_0) + \int_0^1 dt \, \frac{\partial A}{\partial t} \cdot \vec{I}^{(2)}(t)$$
$$\vec{I}^{(4)}(\vec{v}_1) = \vec{I}^{(4)}(\vec{v}_0) + \int_0^1 dt \, \frac{\partial A}{\partial t} \cdot \vec{I}^{(3)}(\vec{v}_0) + \int_0^1 dt_1 \int_0^{t_1} dt_2 \frac{\partial A}{\partial t_1} \cdot \frac{\partial A}{\partial t_2} \cdot \vec{I}^{(2)}(t_2)$$

- Usually: Express it in terms of known functions
- Here: it might be possible to express the result in terms of Li₄, Li_{2,2}, but most likely inefficient for evaluations!
- Instead, use one-fold integral representation along some path!
 - Step 1: Analytically solve the DE up to weight 2. Step 2: Write weight 3, 4 solution as integrals over weight 2:

 $\vec{I}^{(3)}(\vec{v}_1) = \vec{I}^{(3)}(\vec{v}_0) + \int_0^1 dt \ \frac{\partial A}{\partial t} \cdot \vec{I}^{(2)}(t) \qquad \qquad \text{Improves evaluation time from } \mathcal{O}(3 \text{ h}) \to \mathcal{O}(7 \text{ min}) \\ \mathcal{O}(20 \text{ digits precision}) \\ \vec{I}^{(4)}(\vec{v}_1) = \vec{I}^{(4)}(\vec{v}_0) + \int_0^1 dt \ \left(\frac{\partial A}{\partial t} \cdot \vec{I}^{(3)}(\vec{v}_0) + (A(1) - A(t)) \cdot \frac{\partial A}{\partial t} \cdot \vec{I}^{(2)}(t)\right)$

cf. AMFlow [Liu, Ma '23]

- Most efficient technique: predict the alphabet & bootstrap the canonical DE
- Supplement with boundary conditions to set up one-fold integral representations at weight 4
- Next steps: proceed with the remaining families

- Analytic continuation to physical scattering region?
- What is the general structure of *n*-point 2-loop alphabets?

0	0	0 0	0	0	0	0	o o	0	0	0	0	0 0	0	0	0	0																			0		o () 0	0	0	0
0	•	0 0	•	0	0	0	• •	0	0	0	0	0 0	0	0	0	0																			0	0	o () 0	0	0	0
0	0	0 0	•	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0																	0	0	0	0	o () 0	0	0	0
0	0	0 0	•	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0																		0	0	0	o (o 0	0	0	0
0	0	0 0	•	0	0	0	• •	0	0	0	0	0 0	0	0	0	0																	0	0	0	0	o c	o c	0	0	0
0	0	0 0	•	0	0	0	• •	0	0	0	0	0 0	0	0	0																	0	0	0	0	0	o (o c	0	0	0
0	0	0 0	•	0	0	0	0 0	0	0	0	0	0 0	0	0																	0 0	0	0	0	0	0	o (o c	0	0	0
0	0	0 0	•	0	0	0	0 0	0	0	0	0	0 0	0																		0 0	0	0	0	0	0	o (o c	0	0	0
0	0	0 0	•	0	0	0	0 0	0	0	0	0	0 0																			0 0	0	0	0	0	0	o (o c	0	0	0
0	0	0 0	0	0	0	0	0 0	0	0	0	0	0 0																		0	0 0	0	0	0	0	0	o (o c	0	0	0
0	0	0 0	0	0	0	0	0 0	0	0	0	0																		0	0	0 0	0	0	0	0	0	o (o c	0	0	0
0	0	0 0	•	0	0	0	0 0	0	0	0																		0 0	0	0	0 0	•	0	0	0	0	• •	o c	0	0	0
0	0	0 0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0												0 0	o	0	0 0	0	0	0	0	0	o (o c	0	0	0
0	0	0	34	Δ	0	K	00	U	P	•	S	c			-	S												0 0	0	0	0 0	0	0	0	0	0	o (o c	0	0	0
0	0	0 0	0	0	0	0	0 0	0	•	0	0	0 0	0	0	0	0											0	0 0	0	0	0 0	•	0	0	0	0	o (o c	0	0	0
0	0	0 0	0	0	0	0	0 0																				0	0 0	0	0	0 0	•	0	0	0	0	• •	o c	0	0	0
0	0	0 0	0	0	0	0																				0	0	0 0	0	0	0 0	•	0	0	0	0	o (o c	0	0	0
0	0	0 0	0	0	0	0																			0 0	0	0	• •	0	0	0 0	0	0	0	0	0	o (o c	0	0	0
																									0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	0 0	o o	0	0	0
																					0 0			0	0 0	0	0	0 0	0	0	0 0	•	0	0	0	0	0 0	0 0	0	0	0
																					0			0	0 0	0	0	0 0	0	0	0 0	•	0	0	0	0	o (o o	0	0	0
																					0 0		0	0	0 0	0	0	0 0	0	0	0 0	•	0	0	0	0	o (0 0	0	0	0
																					0 0	o o	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0	0	0	o (0 0	0	0	0
																					0 0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	•	0	0	0	0	o (0 0	0	0	0
																							-			-	_				~ ~										
																						0	0	0	0 0	0	0	0 0	0	0	0 0		0	0	0	0	0 C) 0	0	0	0
																					0 0	5 0 5 0	0	0	0 0 0 0	0	0 0	0 0 0 0	0 0	0	0 0 0 0	0	0	0 0	0	0 0	0 (0 0	。。 。。	0 0	0 0	0 0
																				0	0 (0 (0 0	0 0	0 0 0 0	0 0 0	0 0 0	00 00 00	0 0 0	0 0	0 0 0 0	0 0	0 0 0	0 0	0 0	0 0 0	0 (0 (0 (。。。 。。。 。。。	0 0 0	0 0 0	0 0 0
																				0 0 0			0 0 0	0 0 0	000 000 000	0 0 0	0 0 0	000 000 000	0 0 0	0 0 0	0 0 0 0 0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 (0 (0 (0 (> 0 > 0 > 0 > 0	0 0 0	0 0 0	0 0 0
																				0 0 0 0			0 0 0	0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	000 000 000 000	0 0 0 0	0 0 0 0			0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0		> 0 > 0 > 0 > 0	0 0 0 0	0 0 0 0	0 0 0 0

UT INTEGRALS FOR THE DOUBLE BOX FAMILY

Numerators:

$$\begin{split} N_1 &= -s_{12}s_{45}s_{234} & N_4 = \frac{s_{12}}{\epsilon_{1543}}G\begin{pmatrix} l_2 - p_6 & p_5 & p_4 & p_1 + p_6 \\ p_1 & p_5 & p_4 & p_3 \end{pmatrix} \\ N_2 &= -s_{12}s_{45}(l_1 + p_5 + p_6)^2 & N_5 = -\frac{1}{4}\frac{\epsilon_{1245}}{G(p_1, p_2, p_5, p_6)}G\begin{pmatrix} l_1 & p_1 & p_2 & p_5 & p_6 \\ l_2 & p_1 & p_2 & p_5 & p_6 \end{pmatrix} \\ N_3 &= \frac{s_{45}}{\epsilon_{5126}}G\begin{pmatrix} l_1 & p_1 & p_2 & p_5 + p_6 \\ p_1 & p_2 & p_5 & p_6 \end{pmatrix} & N_6 = \frac{1}{8}\left[G\begin{pmatrix} l_1 & p_1 & p_2 \\ l_2 - p_6 & p_4 & p_5 \end{pmatrix} + (l_1 - p_1)^2(l_2 - p_6 - p_5)^2(s_{123} + s_{345})\right] \\ N_7 &= \frac{\Delta_6}{G(p_1, p_2, p_4, p_5)}G\begin{pmatrix} l_1 & p_1 & p_2 & p_4 & p_5 \\ l_2 & p_1 & p_2 & p_4 & p_5 \end{pmatrix} \end{split}$$

UT INTEGRALS FOR THE PENTATRI & HEXABUB

Numerators:

$$N_{\text{pt}} = \frac{1}{32\epsilon_{1235}} G \begin{pmatrix} l_1 & p_1 & p_2 & p_3 & p_5 \\ l_1 & p_1 & p_2 & p_3 & p_5 \end{pmatrix} \qquad \qquad N_{\text{hb}} = \frac{(l_1 + p_6)^2}{32\epsilon_{1234}} G \begin{pmatrix} l_1 & p_1 & p_2 & p_3 & p_5 \end{pmatrix}$$

$$> I_{hb} = \epsilon^3 N_{hb} \times$$

$$I_{\mathsf{pt}} = \epsilon^4 N_{pt} \times -$$

$$N_{\text{hb}} = \frac{(l_1 + p_6)^2}{32\epsilon_{1234}} G \begin{pmatrix} l_1 & p_1 & p_2 & p_3 & p_4 \\ l_1 & p_1 & p_2 & p_3 & p_4 \end{pmatrix}$$

111

FIXING THE BOUNDARY VALUES

IV

FIXING THE BOUNDARY VALUES

• Boundary values at $\vec{v}_0 = \{-1, -1, ..., -1\}$:

$$I_{db,1} = 1 + \frac{\pi^2}{6}e^2 + \frac{38}{3}\zeta_3e^3 + \left(\frac{49\pi^4}{216} + \frac{32}{3}\text{Im}[\text{Li}_2(\rho)]\right)e^4$$
$$I_{db,2} = 1 + \frac{\pi^2}{6}e^2 + \frac{34}{3}\zeta_3e^3 + \left(\frac{71\pi^4}{360} + 20 \text{ Im}[\text{Li}_2(\rho)]\right)e^4$$
$$I_{db,6} = -\left(\frac{\pi^4}{540} + \frac{4}{3}\text{Im}[\text{Li}_2(\rho)]^2\right)e^4$$
$$I_{db,3} = I_{db,4} = I_{db,5} = I_{db,7} = I_{pt} = I_{hb} = 0$$

