

KEY MESSAGE

Can evaluate six-point Feynman integrals at high precision within a few minutes by solving their canonical DEs.

High energy physics has entered the precision era.

• Measurements of observables for many LHC processes are now **available at 1% precision**

• On theory side, one bottleneck are reliable and fast evaluations of **two-loop Feynman integrals**

TWO-LOOP FEYNMAN INTEGRALS

• State-of-the-art: two-loop five-point Feynman integrals (five on-shell legs, four on-shell + one off-shell leg, one or two massive propagtors)

> [Gehrmann, Henn, Lo Presti '18; Abreu, Dixon, Herrmann, Page, Zeng '18; Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia '18; Abreu, Ita, Moriello, Page, Tschernow, Zeng '20; Chicherin, Sotnikov, '20; Abreu, Ita, Page, Tschernow '21; Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia '23; Badger, Becchetti, Cahubey, Marzucca '23; Febres Cordero, Figueiredo, Kraus, Page, Reina '23]

> > [cf. talk by Kraus]

- Very little is known about **two-loop six-point processes** in general theories
- Phenomenologically interesting: 4-jet production @ LHC
- Theoretically interesting:
	- Analytic structure of QCD function space
	- Wilson loops with Lagrangian insertion

PLANAR TWO-LOOP SIX-POINT INTEGRAL FAMILIES

PLANAR TWO-LOOP SIX-POINT INTEGRAL FAMILIES

 $a_i \in \mathbb{Z}$

NOTATION AND KINEMATICS

 $I^{d_0}[a_1,\ldots,a_{13}]=e^{2\varepsilon\gamma_E}$ $\mathsf{d}^{d_0-2\epsilon}l_1\mathsf{d}^{d_0-2\epsilon}l_2$ $i\pi$ ^(*d*₀−2 ϵ) $D_1^{a_1} \ldots D_{13}^{a_{13}}$

$$
D_1 = l_1^2, D_2 = (l_1 + p_1)^2, \dots, D_{13} = (l_1 + l_2)^2
$$

External momenta:

$$
p_i^2=0, \quad i=1,\ldots,6 \qquad \sum_{i=1}^6 p_i=0 \qquad \qquad p_i \in \mathbb{R}^{D_\text{ext}}
$$

$$
\begin{array}{c|c}\n & 3 \\
2 & 4 \\
1 & 13 \\
1 & 6\n\end{array}\n\qquad\n\begin{array}{c|c}\n & 4 \\
2 & 1 \\
1 & 1 \\
1 & 6\n\end{array}\n\qquad\n\begin{array}{c|c}\n & 4 \\
 & 5 \\
 & 6 \\
 & 1\n\end{array}
$$

NOTATION AND KINEMATICS

• For $D_{ext} > 4$, nine independent Mandelstam invariants

$$
\vec{v} = \{s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{61}, s_{123}, s_{234}, s_{345}\}\
$$

$$
s_{ij} = (p_i + p_j)^2, \qquad s_{ijk} = (p_i + p_j + p_k)^2
$$

• For
$$
D_{ext} = 4
$$
, Gram determinant constraint

$$
0 = G(p_1, p_2, p_3, p_4, p_5) = \det(p_i \cdot p_j), \qquad 1 \le i, j \le 5
$$

= $s_{12} s_{23}^2 s_{34} s_{56} + (86 \text{ terms})$

INTEGRATION VIA DIFFERENTIATION

v 1

v \overline{a} $\boldsymbol{0}$

- Can get value of a function by integrating its first derivatives along some path!
	- 1) Integration by parts (IBP): family is spanned by finite number of basis elements [Chetyrkin, Tkachov '81; Laporta '00]

$$
I^{d_0}[\vec{a}] = \vec{C} \cdot \vec{I}_{\text{master}}
$$

 finite basis

2) Derivatives of an integral land in the same family!

INTEGRATION VIA DIFFERENTIATION

- Can get value of a function by integrating its first derivatives along some path!
	- 1) Integration by parts (IBP): family is spanned by finite number of basis elements [Chetyrkin, Tkachov '81; Laporta '00]

$$
I^{d_0}[\vec{a}] = \vec{C} \cdot \vec{I}_{\text{master}}
$$
finite basis

2) Derivatives of an integral land in the same family!

$$
d\vec{I}_{master} = dM(\epsilon, \vec{v}) \cdot \vec{I}_{master}
$$

$$
d = \sum dv_k \partial_{v_k}
$$

v \overline{a} $\boldsymbol{0}$

[Smirnov, Petukhov '10]

v 1

A CANONICAL BASIS

We are looking for a **canonical basis**:

[Henn '13]

There is no (efficient) algorithmic way at two loops.

However, we can recycle one-loop insights to some extent…

INGREDIENT 1: N-GONS IN N DIMENSIONS

• At one loop, know how to construct UT integrals for arbitrary # of points:

INGREDIENT 2: DIMENSION-SHIFT IDENTITIES

• Obvious from Schwinger Parametrization: [Tarasov '96] • E.g. $4-2\epsilon$ = $6-2\epsilon$ + $6-2\epsilon$ + $6-2\epsilon$ + $6-2\epsilon$ $I \propto \int dx_1 ... dx_k x^{\nu-1} \mathcal{U}^{-D/2} \exp(-\mathcal{F}/\mathcal{U}) = \int dx_1 ... dx_k x^{\nu-1} \mathcal{U} \mathcal{U}^{-(D+2)/2}$

Pentagon-Triangle Hexagon-Bubble

Pentagon-Triangle Hexagon-Bubble

Are UT integrals!

Double-Box

Pentagon-Triangle Hexagon-Bubble

Double-Box

Found 6 more by using Gram determinants with loop momenta as numerators and insisting on definite parity behavior.

DIFFERENTIAL EQUATION BLOCKS IN CANONICAL FORM

SPEED UP CALCULATION BY WORKING OVER FINITE FIELD

Analytical: High cost of time and memory!

Evaluate over finite field and reconstruct rational functions only at the end!

We use FiniteFlow [Peraro '19] [von Manteuffel, Schabinger '15]

 $\mathcal{O}(???) \rightarrow \mathcal{O}(40h \text{ per entry})$

SPEED UP CALCULATION BY WORKING OVER FINITE FIELD

If we know alphabet $\{ \log W_j \}$ a priori: Only have to fit the rational entries of the matrices *ci*

 $\mathcal{O}(years) \rightarrow \mathcal{O}(hours)$

[Abreu, Page, Zeng '19]

TWO-LOOP ALPHABET LETTERS

How to find the alphabet $\mathbb{A} = \{W_i\}$?

- Study of singularities of Feynman integrals: **Landau analysis** [Bjorken; Landau; Nakanishi '59]
- Predicts the components of the Landau variety, i.e. the algebraic variety in kinematic space on which singularities may lie

recent progress: [Fevola, Mizera, Telen '23,'24] [Helmer, Papathanasiou, Tellander '24] [He, Jiang, Liu, Yang '23; Jiang, Liu, Xu, Yang '24]

TWO-LOOP ALPHABET LETTERS

- How to find the alphabet $\mathbb{A} = \{W_i\}$?
- Study of singularities of Feynman integrals: **Landau analysis** [Bjorken; Landau; Nakanishi '59]
- Predicts the components of the Landau variety, i.e. the algebraic variety in kinematic space on which singularities may lie

recent progress: [Fevola, Mizera, Telen '23,'24] [Helmer, Papathanasiou, Tellander '24] [He, Jiang, Liu, Yang '23; Jiang, Liu, Xu, Yang '24]

Output of this analysis: $\Big\}$

$$
A_{\text{even}} = \{s_{12}, s_{23}, ..., s_{12} - s_{123}, ...\}
$$
 93 polynomial letters
 $\{\sqrt{Q_i}\} = \{\sqrt{\lambda(s_{12}, s_{34}, s_{56})}, ...\}$ 21 square root letters

17

TWO-LOOP ALPHABET LETTERS

• But we know from experience, that there are also "odd" letters:

W

$$
V_{odd} = \frac{P - \sqrt{Q}}{P + \sqrt{Q}}
$$
 where $Q \in \{Q_i\} \cup \{Q_iQ_j\}$
P is polynomial in v_i

TWO-LOOP ALPHABET LETTERS

• But we know from experience, that there are also "odd" letters:

$$
W_{odd} = \frac{P - \sqrt{Q}}{P + \sqrt{Q}}
$$
 where $Q \in \{Q_i\} \cup \{Q_iQ_j\}$
P is polynomial in v_i

• Consistent with Landau analysis, if: [Heller, von Manteuffel, Schabinger '19]

$$
(P - \sqrt{Q})(P + \sqrt{Q}) = c \prod_i W_i^{e_i}, \quad W_i \in \mathbb{A}_{even}
$$

1) ANSATZ FOR THE POLYNOMIAL

• e.g. for $\sqrt{\mathcal{Q}} = r_{27}$, i.e. a degree 3 ansatz, assume P has coefficients in $\{-2,...,2\}$: $P(\vec{v})^2 = Q(\vec{v}) + c$ ∏ *i* $W_i^{e_i}$

$$
\#\left(P(\vec{v})\right) \approx 5^{\binom{9+3-1}{3}} \approx 10^{115}
$$

2) ANSATZ FOR THE PRODUCT

REFINE THE PRODUCT ANSATZ! Unpublished [AM, Miczajka '24]

Assume that: $P(\vec{v})^2 = Q(\vec{v}) + W_i(\vec{v}) \cdot (\dots)$ for some particular letter W_i .

Then, for every $\vec{v}_0 \in \mathbb{Q}^9$ such that $W_{\vec{l}}(\vec{v}_0) = 0$, it follows ⃗

$$
\sqrt{\mathcal{Q}(\vec{v}_0)} \in \mathbb{Q}.
$$

Hence, we can filter through the even letters to find a reduced set for any given *Q*.

REFINE THE PRODUCT ANSATZ! Unpublished [AM, Miczajka '24]

Assume that: $P(\vec{v})^2 = Q(\vec{v}) + W_i(\vec{v}) \cdot (\dots)$ for some particular letter W_i .

Then, for every $\vec{v}_0 \in \mathbb{Q}^9$ such that $W_{\vec{l}}(\vec{v}_0) = 0$, it follows ⃗

$$
\sqrt{Q(\vec{v}_0)} \in \mathbb{Q}.
$$

Hence, we can filter through the even letters to find a reduced set for any given *Q*.

Example:
\n
$$
\sqrt{s_{12}^2 + s_{34}^2 + s_{56}^2 - 2s_{12}s_{34} - 2s_{12}s_{56} - 2s_{34}s_{56}} = \sqrt{(s_{34} - s_{56})^2} \in \mathbb{Q}.
$$

CONJECTURED 2-LOOP HEXAGON ALPHABET

- Started with **93** even letters from subsectors and maximal cut
- Using the algorithm, we construct a total of **109** odd letters
	- out of these, **94** of them have a single square root, **15** have two square roots
	- **89** odd letters can be matched to known data from two-loop five-point and one-loop six-point alphabets; **20** letters are completely new

Together with the **21** square roots, we find an alphabet with 93+21+109=**223** letters.

WHAT IT MEANS "TO CALCULATE AN INTEGRAL"

- Usually: Express it in terms of known functions
- Here: it might be possible to express the result in terms of $Li₄$, $Li_{2,2}$, but most likely inefficient for evaluations!

WHAT IT MEANS "TO CALCULATE AN INTEGRA

- Usually: Express it in terms of known functions
- Here: it might be possible to express the result in terms of $Li₄$, $Li_{2,2}$, but most likely inefficient for evaluations!
- Instead, use one-fold integral representation along some path!
	- Step 1: Analytically solve the DE up to weight 2. Step 2: Write weight 3, 4 solution as integrals over weight 2:

$$
\vec{I}^{(3)}(\vec{v}_1) = \vec{I}^{(3)}(\vec{v}_0) + \int_0^1 dt \frac{\partial A}{\partial t} \cdot \vec{I}^{(2)}(t)
$$

$$
\vec{I}^{(4)}(\vec{v}_1) = \vec{I}^{(4)}(\vec{v}_0) + \int_0^1 dt \frac{\partial A}{\partial t} \cdot \vec{I}^{(3)}(t)
$$

$$
\begin{array}{c}\n\cdot & \cdot \\
\overrightarrow{v}_1 & \overrightarrow{v}_{4} \\
\overrightarrow{v}_0 & \overrightarrow{Caron-Huot, Henn '14}\n\end{array}
$$

WHAT IT MEANS "TO CALCULATE AN INTEGRAL"

- Usually: Express it in terms of known functions
- Here: it might be possible to express the result in terms of $Li₄, Li_{2,2}$, but most likely inefficient for evaluations!
- Instead, use one-fold integral representation along some path!
	- Step 1: Analytically solve the DE up to weight 2. Step 2: Write weight 3, 4 solution as integrals over weight 2:

$$
\vec{I}^{(3)}(\vec{v}_1) = \vec{I}^{(3)}(\vec{v}_0) + \int_0^1 dt \frac{\partial A}{\partial t} \cdot \vec{I}^{(2)}(t)
$$

$$
\vec{I}^{(4)}(\vec{v}_1) = \vec{I}^{(4)}(\vec{v}_0) + \int_0^1 dt \frac{\partial A}{\partial t} \cdot \vec{I}^{(3)}(\vec{v}_0) + \int_0^1 dt_1 \int_0^{t_1} dt_2 \frac{\partial A}{\partial t_1} \cdot \frac{\partial A}{\partial t_2} \cdot \vec{I}^{(2)}(t_2)
$$

WHAT IT MEANS "TO CALCULATE AN INTEGRAL"

- Usually: Express it in terms of known functions
- Here: it might be possible to express the result in terms of $Li₄, Li_{2,2}$, but most likely inefficient for evaluations!
- Instead, use one-fold integral representation along some path!
	- Step 1: Analytically solve the DE up to weight 2. Step 2: Write weight 3, 4 solution as integrals over weight 2:

$$
\vec{I}^{(3)}(\vec{v}_1) = \vec{I}^{(3)}(\vec{v}_0) + \int_0^1 dt \frac{\partial A}{\partial t} \cdot \vec{I}^{(2)}(t)
$$
\n
$$
\begin{array}{ccc}\n& \text{Improves evaluation time} \\
\text{from } \mathcal{O}(3 \text{ h}) \to \mathcal{O}(7 \text{ min}) & \text{cf. AMFlow} \\
& \text{and } \text{20 digits precision} \\
& \vec{I}^{(4)}(\vec{v}_1) = \vec{I}^{(4)}(\vec{v}_0) + \int_0^1 dt \left(\frac{\partial A}{\partial t} \cdot \vec{I}^{(3)}(\vec{v}_0) + (A(1) - A(t)) \cdot \frac{\partial A}{\partial t} \cdot \vec{I}^{(2)}(t)\right)\n\end{array}
$$
\n[Lin, Ma'²³]

CONCLUSION & OUTLOOK

- Most efficient technique: predict the alphabet & bootstrap the canonical DE
- Supplement with boundary conditions to set up one-fold integral representations at weight 4
- Next steps: proceed with the remaining families

- Analytic continuation to physical scattering region?
- What is the general structure of *n*-point 2-loop alphabets?

EGRALS FOR THE DOUBLE BOX FAM

Numerators:

 $N_1 = -s_{12} s_{45} s_{234}$ $N_2 = -s_{12} s_{45} (l_1 + p_5 + p_6)^2$ $N_3 =$ *s*45 ϵ_{5126} *^G* (l_1 p_1 p_2 $p_5 + p_6$ *p*¹ *p*² *p*⁵ *p*⁶) $N_4 =$ *s*12 ϵ_{1543} *^G* ($l_2 - p_6$ *p*₅ *p*₄ *p*₁ + *p*₆ *p*¹ *p*⁵ *p*⁴ *p*³) $N_5 = -\frac{1}{4}$ 4 ϵ_{1245} *G*(*p*1, *p*2, *p*5, *p*6) *^G* (*l* ¹ *p*¹ *p*² *p*⁵ *p*⁶ l_2 p_1 p_2 p_5 p_6 $N_6 =$ 1 $\frac{1}{8}$ G l_1 *p*₁ *p*₂ $\begin{pmatrix} \n\frac{p_1}{p_4} & \frac{p_2}{p_5} \\
\frac{p_4}{p_5} & \frac{p_5}{p_6} \n\end{pmatrix}$ + $(l_1 - p_1)^2 (l_2 - p_6 - p_5)^2 (s_{123} + s_{345})$ \mathbf{I} $N_7 =$ Δ_{6} $G(p_1, p_2, p_4, p_5)$ *^G* (*l* ¹ *p*¹ *p*² *p*⁴ *p*⁵ l_2 p_1 p_2 p_4 p_5

UT INTEGRALS FOR THE PENTATRI & HEXABUB

Numerators:

$$
N_{\mathbf{pt}} = \frac{1}{32\epsilon_{1235}} G \begin{pmatrix} l_1 & p_1 & p_2 & p_3 & p_5 \\ l_1 & p_1 & p_2 & p_3 & p_5 \end{pmatrix}
$$

$$
N_{\mathsf{hb}} = \frac{(l_1 + p_6)^2}{32\epsilon_{1234}} G \begin{pmatrix} l_1 & p_1 & p_2 & p_3 & p_4 \\ l_1 & p_1 & p_2 & p_3 & p_4 \end{pmatrix}
$$

$$
I_{\text{pt}} = e^4 N_{pt} \times \left\{\left\{\right\}
$$

III

FIXING THE BOUNDARY VALUES

IV

FIXING THE BOUNDARY VALUES

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}
$$

\n- Boundary values at
$$
\vec{v}_0 = \{-1, -1, \ldots, -1\}
$$
:
\n

$$
I_{\text{db},1} = 1 + \frac{\pi^2}{6} \epsilon^2 + \frac{38}{3} \zeta_3 \epsilon^3 + \left(\frac{49\pi^4}{216} + \frac{32}{3} \text{Im}[\text{Li}_2(\rho)]\right) \epsilon^4
$$

\n
$$
I_{\text{db},2} = 1 + \frac{\pi^2}{6} \epsilon^2 + \frac{34}{3} \zeta_3 \epsilon^3 + \left(\frac{71\pi^4}{360} + 20 \text{ Im}[\text{Li}_2(\rho)]\right) \epsilon^4
$$

\n
$$
I_{\text{db},6} = -\left(\frac{\pi^4}{540} + \frac{4}{3} \text{Im}[\text{Li}_2(\rho)]^2\right) \epsilon^4
$$

\n
$$
I_{\text{db},3} = I_{\text{db},4} = I_{\text{db},5} = I_{\text{db},7} = I_{\text{pt}} = I_{\text{hb}} = 0
$$

