

Towards Precision Calculations on Modern Computers

Joshua Isaacson

In Collaboration With: Enrico Bothmann, Taylor Childers, Walter Giele, Stefan Höche, and Max Knobbe Arxiv: 2106.06507, 2302.10449, 2309.13154, 2311.06198 LoopFest 2024 22 May 2024 **The Team**

Very High-Level Experimental View of an Event

The detector measures:

- Charged particle
 tracks
- Energy deposits in different parts of the detector

Events saved if deemed interesting through the use of a trigger

muon

b-jets

Credit: ATLAS

→ Initial proton beams:

 Incoming partons determined from Parton Distribution Functions (PDFs)

→ Hard Scattering

 Fixed order perturbative calculation: Leading order (LO), Next-to-leading order (NLO), etc.

→ Initial proton beams:

 Incoming partons determined from Parton Distribution Functions (PDFs)

Hard Scattering

 Fixed order perturbative calculation: Leading order (LO), Next-to-leading order (NLO), etc.

→ Soft gluon and parton radiation:

- Analytic Resummation
- Numerical Resummation (i.e. Parton Showers)

→ Initial proton beams:

 Incoming partons determined from Parton Distribution Functions (PDFs)

Hard Scattering

 Fixed order perturbative calculation: Leading order (LO), Next-to-leading order (NLO), etc.

→ Soft gluon and parton radiation:

- Analytic Resummation
- Numerical Resummation (i.e. Parton Showers)

Multiple Parton Interactions:

Interactions between beam remnants

→ Initial proton beams:

 Incoming partons determined from Parton Distribution Functions (PDFs)

Hard Scattering

 Fixed order perturbative calculation: Leading order (LO), Next-to-leading order (NLO), etc.

Soft gluon and parton radiation:

- Analytic Resummation
- Numerical Resummation (i.e. Parton Showers)

Multiple Parton Interactions:

• Interactions between beam remnants

→ Hadronization:

Conversion of quarks and gluons into hadrons

→ Initial proton beams:

 Incoming partons determined from Parton Distribution Functions (PDFs)

Hard Scattering

 Fixed order perturbative calculation: Leading order (LO), Next-to-leading order (NLO), etc.

Soft gluon and parton radiation:

- Analytic Resummation
- Numerical Resummation (i.e. Parton Showers)

Multiple Parton Interactions:

• Interactions between beam remnants

→ Hadronization:

- Conversion of quarks and gluons into hadrons
- → Excited Hadron Decays

Standard Model Production Cross Section Measurements

Computational Challenges

[ATL-PHYS-PUB-2023-039]

• Number of events given by:

(#Events) = (Luminosity) x (Cross Section)

- ATLAS will require about 330 billion V+jet events for the HL-LHC per event generator [2112.09588]
- Estimated to cost roughly 200,000 CPU-years to generate with current tools (4 months on Frontier)
- This is simply unaffordable

Reproduced from: Rep. Prog. Phys. 85 046201

 Current estimates require significant R&D on event generation

[ATLAS Software and Computing HL-LHC Roadmap]

- Event generation significant component
- 70% of time per event spent on tree-level matrix element and momentum generation

[Bothmann, et. al.: 2209.00843]

- Event generation significant component
- 70% of time per event spent on tree-level matrix element and momentum generation

[Bothmann, et. al.: 2209.00843]

 $pp \rightarrow e^+e^-+0,1,2j$ @NLO+3,4,5j@LO

- Main Issues:
 - Low unweighting efficiencies
 - Expensive ME for high multiplicities
 - Inefficient phase space

[Höche, Prestel, Schulz: 1905.05120]

- Hard scattering more expensive than parton shower [Höche, Prestel, Schulz: 1905.05120]
- Computational complexity of merging ME & PS can be made linear with sector showers [Brooks, Preuss: 2008.09468]

Can we speed up event generators?

Recursive Matrix Element Evaluation

[Berends, Giele: Nucl. Phys. B306 (1988), 759]

$$\mathcal{J}_{\alpha}(\pi) = P_{\alpha}(\pi) \sum_{\mathcal{V}_{\alpha}^{\alpha_1,\alpha_2}} \sum_{\mathcal{P}_2(\pi)} \mathcal{S}(\pi_1,\pi_2) V_{\alpha}^{\alpha_1,\alpha_2}(\pi_1,\pi_2) \mathcal{J}_{\alpha_1}(\pi_1) \mathcal{J}_{\alpha_2}(\pi_2)$$

Berends-Giele Recursion

- Reuse parts of calculation
- Most efficient for high multiplicity
- Reduces computation from from O(n!) to O(3ⁿ) for color-dressed or O(n³) for color-ordered
- Note: For color-ordered, the color factor goes like O((n-1)!²)

J_2^{μ}	
J_3^{α} J_4^{σ}	
Etc. J_5^{γ})

Investigating Matrix Element Algorithms

• How to handle sum over unobserved quantum numbers?

Bothmann, Giele, Höche, Isaacson, Knobbe [2106.06507]

Investigating Matrix Element Algorithms

- How to handle sum over unobserved quantum numbers?
- GPUs have taken over scientific computing
- GPUs best suited for this problem
- Memory is challenging for GPUs. What is the best approach?

Bothmann, Giele, Höche, Isaacson, Knobbe [2106.06507]

Investigating Matrix Element Algorithms

- How to handle sum over unobserved quantum numbers?
- GPUs have taken over scientific computing
- GPUs best suited for this problem
- Memory is challenging for GPUs. What is the best approach?
- Chip-to-chip comparison of various algorithms for gluon only processes
- Determine optimal algorithm for a full-fledged generator is color-ordered up to 6 jets

Bothmann, Giele, Höche, Isaacson, Knobbe [2106.06507]

Handling Color

- Use minimal QCD color-basis {A(1,2,σ), σ in Dyck Words} [T. Melia: 1304.7809, 1312.0599, 1509.03297] [H. Johansson, A. Ochirov: 1507.00332]
- Allows to fix on fermion line, remaining permutations are given by Dyck Words
- Four particle Dyck Words: ()(), (())
- Significantly fewer amplitudes to compute

Simplifying Momentum Generation

Bothmann, Childers, Giele, Herren, Höche, Isaacson, Knobbe, Wang [2302.10449]

- Uses basic t-channel with single resonance from MCFM as basic building block
- Expand upon MCFM algorithm by adding a controllable number of resonances
- Limiting resonances turns channel scaling from factorial to polynomial

$$d\Phi_{n}(a,b;1,\ldots,n) = d\Phi_{n-m+1}(a,b;\pi,m+1,\ldots,n) \underbrace{\frac{ds_{\pi}}{2\pi}}_{d\pi} d\Phi_{m}(\pi;1,\ldots,m)$$

$$dx_{a}dx_{b} d\Phi_{n}(a,b;1,\ldots,n) = \frac{2\pi}{s} \begin{bmatrix} n-1 \\ 16\pi^{2} \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ a \\ (a) \end{bmatrix} dy_{n} \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ b \\ a \\ (b) \\ (c) \\ ($$

Common High-energy Integration LIbrary (Chili)

Bothmann, Childers, Giele, Herren, Höche, Isaacson, Knobbe, Wang [2302.10449]

Significant cut efficiency
 improvement

• Simplified phase space evaluation

• Comparable performance up to 5 additional jets

Common High-energy Integration LIbrary (Chili)

Bothmann, Childers, Giele, Herren, Höche, Isaacson, Knobbe, Wang [2302.10449]

• Significant cut efficiency improvement

 Simplified phase space evaluation • Comparable performance up to 5 additional jets

Introducing Pepper

Bothmann, Childers, Giele, Höche, Isaacson, Knobbe [2311.06198]

- Portable Engine for the Production of Parton-level Event Records
- Interfaces with Sherpa using HDF5 [Bothmann, Childers, Guetschow, Höche, Hovland, Isaacson, Knobbe, Latham: 2309.13154]
- Can run on all existing CPU and GPU architectures

(Pre-)Exascale Computers Pepper can fully use

Bothmann, Childers, Giele, Höche, Isaacson, Knobbe [2311.06198]

Comparing Runtimes

Pepper Current Status

Bothmann, Childers, Giele, Höche, Isaacson, Knobbe [2311.06198]

- ATLAS estimated a requirement of 200,000 CPU-years for V+jet sample in 2021
- Note: Pepper results are GPU only!

Sherpa: 4 months Sherp		pa: 2 months	Sherpa: 14 months		Sherpa: 6 months		onths	
Contract Laboratory Contract	ONTIER C ENERGY () ENERGY		- CCRANGED -					
Pepper: 4 hou	urs Pepp	er: 6 hours	Pe	epper: 8 h	nours	Р	epper: 15	hours
		Intel CPU	Ν	VIDIA G	BPU	AMD	GPU I	ntel GPU
				12				
	MEvents / hour	$2 \times \text{Skylake8180}$	V100	A100	H100	MI100	MI250	PVC
	$pp \rightarrow t\bar{t} + 4j$	0.06	0.5	1.0	1.7	0.4	0.3	0.3
PEPOPER	$pp \rightarrow e^- e^+ + 5j$	0.003	0.03	0.05	0.1	0.03	0.03	0.02
PORTABLE PARTON-LEVEL EVENT GENERATOR								

Timing Details

- → Lower multiplicity are I/O limited
- → Computing relevant component only at large multiplicities

Physics Validation

Pepper can interfaced with Sherpa through
 LHEH5 format

Pepper Future Outlook

Going beyond leading order:

- → Development of novel GPU real subtraction term almost complete [Höche, Knobbe]
- → Converting MCFM virtual corrections to run on GPUs (Preliminary numbers with laptop GPU)
- → Developing library for special functions on GPUs:
 - Currently have all Polylogarithms (needs optimization)
 - Working on GPLs

	MCFM (CPU)	MCFM (GPU)
W+1jet	~4000 ns / event	~300 ns / event
Z+1jet	~8000 ns / event	~600 ns / event

Pepper Future Outlook

Going beyond leading order:

- → Developing library for special functions on GPUs:
 - Currently have all Polylogarithms (needs optimization)
 - Working on GPLs
- → Li₂ and Li₃ implementations based on [Voigt: 2201.01678, 2308.11619]

$$\mathrm{li}_{3}(x) = x \sum_{k=0}^{\infty} \frac{x^{k}}{(k+1)^{3}} \approx x \frac{\sum_{k=0}^{5} p_{k} x^{k}}{\sum_{k=0}^{6} q_{k} x^{k}}$$

	EastCD	Pepper			
	FasiGFL	CPU	GPU		
Li ₂	240 ns /	27 ns /	6.5 ns /		
	point	point	point		
Li ₃	220 ns /	17 ns /	6.5 ns /		
	point	point	point		

Pepper Future Outlook

Provide a python interface to Pepper for machine learning applications

- → Normalizing Flows for Phase Space: [Bothmann et al: 2001.05478, JI et al. 2001.10028, JI et al. 2001.05486, Heimel, JI, et al. 2212.06172, Heimel et al. 2311.01548]
 - Pepper matrix elements are sufficiently fast on GPUs
 - Previously limited to CPU training of networks, now all can be run on GPUs
 - Will enable investigation of higher multiplicity processes than previously possible

ConclusionsSherpa: 4 monthsSherpa: 2 monthsSherpa: 14 monthsSherpa: 6 monthsImage: ConclusionsImage: ConclusionsImage: ConclusionsImage: ConclusionsImage: ConclusionsImage: ConclusionsExper: 4 monthsSherpa: 2 monthsImage: ConclusionsImage: ConclusionsImage: ConclusionsExper: 4 monthsSherpa: 2 monthsImage: ConclusionsImage: ConclusionsImage: ConclusionsExper: 4 monthsSherpa: 2 monthsImage: ConclusionsImage: ConclusionsImage: ConclusionsExper: 6 hoursExper: 6 hoursExper: 8 hoursExper: 15 hours

- → Pepper resolves tree-level computational issue for experiments
 - Achieves scalability laptop from a Leadership Computing Facility
 - Interface to Sherpa for direct usage by experiments already
- → Ongoing work to extend the framework beyond leading order
- → Adding additional processes beyond V+jet and ttbar+jet
- Developing as a framework to be used for fixed order calculations by providing a library interface (under way)
- → Use synergies between Pepper / Chili, on-device training, and ML

34

Normalizing Flows

GOAL: Create a network that can learn a change of variables, that transforms an easy to sample base distribution into the desired target distribution

$$z \sim \pi(z), x = f(z), z = f^{-1}(x)$$
$$p(x) = \pi(z) |\det \frac{\mathrm{d}z}{\mathrm{d}x}| \qquad \text{[1410.08516] [1808.032]}$$

Normalizing Flows

GOAL: Create a network that can learn a change of variables, that transforms an easy to sample base distribution into the desired target distribution

$$z \sim \pi(z), x = f(z), z = f^{-1}(x)$$
$$p(x) = \pi(z) |\det \frac{\mathrm{d}z}{\mathrm{d}x}|$$

[1410.08516] [1808.03856] [1906.04032]

Basic building block x_A y permutation x_B $C(x_B; m(x_A))$

i-flow for LHC Event Generation

Gao, Höche, Isaacson, Krause, Schulz [2001.10028]

Unweighting Efficiency:

- 1. Draw nN_{opt} events, where N_{opt} events used to optimize integrator
- 2. Select *m* replicas of *N*_{opt} events and compute maximum weight
- 3. Define w_{max} as median of individual maxima

Efficiency is then given as:

$$\eta_{\rm bs} = \frac{\langle f/g \rangle_G}{w_{\rm max}}$$

i-flow for LHC Event Generation

Unweighting Efficiency:

- 1. Draw nN_{opt} events, where N_{opt} events used to optimize integrator
- 2. Select *m* replicas of N_{opt} events and compute maximum weight
- 3. Define w_{max} as median of individual maxima

Efficiency is then given as:

Gao, Höche, Isaacson, Krause, Schulz [2001.10028]

Multichanneling (Mixture Distributions)

• Introduce several variable transformations (channels):

$$g_i(x) = \left| \frac{\partial G_i(x)}{\partial x} \right|$$
 with $\int dx g_i(x) = 1$ for $i = 1, ..., m$,

• Introduce parameter to combine channels into single distribution

$$g(x) = \sum_{i}^{m} \alpha_{i} g_{i}(x)$$
 with $\sum_{i}^{m} \alpha_{i} = 1$ and $\alpha_{i} \ge 0$,

• The integral can now be calculated as:

$$I[f] = \sum_{i}^{m} \int_{\Phi} \mathrm{d}^{d} x \, \alpha_{i} \, g_{i}(x) \, \frac{f(x)}{g(x)} = \sum_{i}^{m} \int_{U_{i}} \mathrm{d}^{d} y \, \alpha_{i} \left. \frac{f(x)}{g(x)} \right|_{x = \overline{G}_{i}(y)}$$

• Can promote parameter to be local:

$$\alpha_i(x) = \alpha_i \frac{g_i(x)}{g(x)} ,$$

,

This is MadNIS!

- Leverage ideas from i-flow
- Promote channel weights to a learnable distribution given by a NN
- Implement buffered training to improve on computational time
- Would benefit from differential matrix element

This is MadNIS!

- Leverage ideas from i-flow
- Promote channel weights to a learnable distribution given by a NN
- Implement buffered training to improve on computational time
- Would benefit from differential matrix element

