

Shower Monte Carlo event generators

SHOWER MONTE CARLO EVENT GENERATORS = <u>default tool</u> for interpreting collider data

Parton Showers

Energy degradation of hard particles produced during the collision

Are current showers good enough?

- showers do an amazing job on many observables for LHC
- various places see 10–30% discrepancies between showers and data
- ► A lot of work is required to meet the percent precision target!

Logarithmically-accurate Parton Showers

<u>PARTON SHOWERS</u> = energy degradation via an iterated sequence of

$$L = \ln \frac{Q}{\Lambda} \gg 1$$

simple algorithm to include the dominant radiative corrections at all orders for any observable!

$$\exp\left(-Lg_{LL}(\beta_0\alpha_s L) + \dots\right)$$

Logarithmically-accurate Parton Showers

<u>PARTON SHOWERS</u> = energy degradation via an iterated sequence of

$$L = \ln \frac{Q}{\Lambda} \gg 1$$

simple algorithm to include the **dominant radiative corrections** at all orders for any observable!

$$\exp\left(-Lg_{LL}(\beta_0\alpha_s L) + g_{NLL}(\beta_0\alpha_s L) + \dots\right)$$

For $Q \sim 50 - 10000 \,\text{GeV}, \, \beta_0 \alpha_s L \sim 0.3 - 0.5$: Next-to-Leading Logarithms needed for quantitative predictions!

Logarithmically-accurate Parton Showers

<u>PARTON SHOWERS</u> = energy degradation via an iterated sequence of

$$L = \ln \frac{Q}{\Lambda} \gg 1$$

simple algorithm to include the dominant radiative corrections at all orders for any observable!

 $\sum (O < e^{-L}) = \exp \left(-Lg_{LL}(\beta_0 \alpha_s L) + g_{NLL}(\beta_0 \alpha_s L) + \alpha_s g_{NNLL}(\beta_0 \alpha_s L) + \dots\right)$

For $Q \sim 50 - 10000 \,\text{GeV}, \, \beta_0 \alpha_s L \sim 0.3 - 0.5$: Next-to-Next-to-Leading Logarithms needed for <u>%-level</u>

Parton Showers in a nutshell

Dipole showers [Gustafson, Pettersson, '88] are the most used shower paradigm

: : : :

Start with $q\bar{q}$ state produced at a hard scale v_0 .

Silvia Ferrario Ravasio

: : : :

Start with $q\bar{q}$ state produced at a hard scale v_0 . Throw a random number to determine down to

what scale state persists unchanged

$$v_0, v) = \exp\left(-\int_v^{v_0} dP_{q\bar{q}}(\Phi)\right)$$

Parton Showers in a nutshell

: : :

- Start with $q\bar{q}$ state produced at a hard scale v_0 .
- Throw a random number to determine down to what **scale** state persists unchanged
- At some point, **state splits** $(2\rightarrow 3, i.e. emits$ gluon) at a scale $v_1 < v_0$. The kinematic (rapidity and azimuth) of the gluon is chosen according to

$$_{q\bar{q}}(\Phi(v_1)) \qquad \Phi = \{v, \eta, \varphi\}$$

Parton Showers in a nutshell

: : :

- Start with $q\bar{q}$ state produced at a hard scale v_0 .
- Throw a random number to determine down to what **scale** state persists unchanged
- At some point, state splits $(2 \rightarrow 3, i.e. \text{ emits}$ gluon) at a scale $v_1 < v_0$.
- The gluon is part of two dipoles (qg), $(g\bar{q})$.
- Iterate the above procedure for both dipoles independently, using v_1 as starting scale.

Q0 g4 **g**2 g g3 **q**5 **q**6 \overline{q}_0 V4 **V**6 **V**5

self-similar evolution continues until it reaches a nonperturbative scale

Starting from a $e^+e^- \rightarrow Z^* \rightarrow q\bar{q}$ system, what is the splitting probability?

 $\mathrm{d}\mathscr{P}_{\tilde{i}\tilde{j}\to ijk} \sim \frac{\mathrm{d}v^2}{v^2} \mathrm{d}\bar{\eta} \,\frac{\mathrm{d}\varphi}{2\pi} \,P_{\tilde{i},\tilde{j}\to i,j,k}(v,\bar{\eta},\varphi)$

Starting from a $e^+e^- \rightarrow Z^* \rightarrow q\bar{q}$ system, what is the splitting probability?

 $\mathrm{d}\mathscr{P}_{\tilde{i}\tilde{j}\to ijk} \sim \frac{\mathrm{d}v^2}{v^2} \mathrm{d}\bar{\eta} \,\frac{\mathrm{d}\varphi}{2\pi} \,P_{\tilde{i},\tilde{j}\to i,j,k}(v,\bar{\eta},\varphi)$

Matrix element for emitting a parton k from a parton *i* (or *j*)

Loopfest XXII

Starting from a $e^+e^- \rightarrow Z^* \rightarrow q\bar{q}$ system, what is the splitting probability?

 $\mathrm{d}\mathscr{P}_{\tilde{i}\tilde{j}\to ijk} \sim \frac{\mathrm{d}v^2}{v^2} \mathrm{d}\bar{\eta} \frac{\mathrm{d}\varphi}{2\pi} P_{\tilde{i},\tilde{j}\to i,j,k}(v,\bar{\eta},\varphi)$

Evolution variable: emissions are ordered $Q > v_1 > v_2 > \ldots > \Lambda$ Matrix element for emitting a parton k from a parton *i* (or *j*)

Starting from a $e^+e^- \rightarrow Z^* \rightarrow q\bar{q}$ system, what is the splitting probability?

 $\mathrm{d}\mathscr{P}_{\tilde{i}\tilde{j}\to ijk} \sim \frac{\mathrm{d}v^2}{v^2} \mathrm{d}\bar{\eta} \,\frac{\mathrm{d}\varphi}{2\imath}$

Evolution variable: emissions are ordered $Q > v_1 > v_2 > \ldots > \Lambda$ Kinematic mapping: how to reshuffle the momenta of *i* and *j* after the emission takes place

$$\frac{\rho}{\pi} P_{\tilde{i},\tilde{j}\to i,j,k}(v,\bar{\eta},\varphi)$$

Matrix element for emitting a parton k from a parton *i* (or *j*)

Starting from a $e^+e^- \rightarrow Z^* \rightarrow q\bar{q}$ system, what is the splitting probability?

Their inteplay determines the shower logarithmic accuracy

 $\mathrm{d}\mathscr{P}_{\tilde{i}\tilde{j}\to ijk} \sim \frac{\mathrm{d}v^2}{v^2} \mathrm{d}\bar{\eta} \frac{\mathrm{d}q}{2\pi}$

Evolution variable: emissions are ordered $Q > v_1 > v_2 > \ldots > \Lambda$ Kinematic mapping: how to reshuffle the momenta of *i* and *j* after the emission takes place

$$\frac{\rho}{\pi} P_{\tilde{i},\tilde{j}\to i,j,k}(v,\bar{\eta},\varphi)$$

Matrix element for emitting a parton k from a parton *i* (or *j*)

How to build a logarithmically-accurate parton shower?

► <u>The Lund plane</u>: diagnostic tools for resummation and parton showers

How to build a logarithmically-accurate parton shower?

► <u>The Lund plane</u>: diagnostic tools for resummation and parton showers

Soft

- ► <u>The Lund plane</u>: diagnostic tools for resummation and parton showers
- ► At <u>Leading Logarithmic</u> <u>accuracy</u> we only care about soft-collinear emissions very separated between each others

$$dP_i = \frac{\alpha_s(k_t)}{\pi} \frac{2C_F}{z} dz d\ln k_t$$

One-loop QCD coupling constant at $u_{D} = k$. LO soft splitting function constant at $\mu_R = k_t$

- ► <u>The Lund plane</u>: diagnostic tools for resummation and parton showers
- ► At Leading Logarithmic <u>accuracy</u> we only care about soft-collinear emissions very separated between each others

$$dP_{i} = \frac{\alpha_{s}(k_{t})}{\pi} \frac{2C_{F}}{z} dz d \ln k_{t}$$
One-loop QCD coupling LO soft splitting function
$$dP_{i} = \frac{\alpha_{s}(k_{t})}{\pi} \frac{2C_{F}}{z} dz d \ln k_{t}$$

- ► <u>The Lund plane</u>: diagnostic tools for resummation and parton showers
- ► At <u>Leading Logarithmic</u> <u>accuracy</u> we only care about soft-collinear emissions very separated between each others

$$dP_i = \frac{\alpha_s(k_t)}{\pi} \frac{2C_F}{z} dz d\ln k_t$$

One-loop QCD coupling constant at $\mu_R = k_t$

LO soft splitting function

This constraints the kinematic mapping $\Phi_n \rightarrow \Phi_{n+1}$ and the ordering variable choice: emissions well separated in rapidity and transverse momentum are independent from each others

At <u>NLL accuracy:</u>

► The rate for <u>soft-collinear</u> ____ <u>emissions</u> must be correct at NLO $dP_i = \frac{\alpha_s(k_t)}{\pi} \left(1 + \frac{\alpha_s(k_t)}{2\pi} K_1 \right) \frac{2C_F}{Z} dz d\ln k_t$

At <u>NLL accuracy:</u>

- ► The rate for <u>soft-collinear</u> <u>emissions</u> must be correct at NLO $dP_i = \frac{\alpha_s(k_t)}{\pi} \left(1 + \frac{\alpha_s(k_t)}{2\pi} K_1 \right) \frac{2C_F}{z} dz d \ln k_t$
- ► We need to include <u>soft and collinear</u> contributions at LO $dP_i = \frac{\alpha_s(k_t)}{\pi} P(z) \, dz \, d \ln k_t$

At <u>NLL accuracy:</u>

This tells us what matrix element should we use to generate a new emission *Catani, Marchesini, Webber '91*

At <u>NLL accuracy:</u>

- ► The rate for <u>soft-collinear</u> emissions must be correct at NLO $dP_i = \frac{\alpha_s(k_t)}{\pi} \left(1 + \frac{\alpha_s(k_t)}{2\pi} K_1 \right) \frac{2C_F}{Z} dz \, d\ln k_t$
- ► We need to include <u>soft</u> and <u>collinear</u> contributions at LO $dP_i = \frac{\alpha_s(k_t)}{\pi} P(z) \, dz \, d \ln k_t$
- Emissions separated in just one direction in the Lund plane enter at this order

Loopfest XXII

At <u>NLL accuracy</u>:

- ► The rate for soft-collinear emissions must be correct at NLO $dP_i = \frac{\alpha_s(k_t)}{\pi} \left(1 + \frac{\alpha_s(k_t)}{2\pi} K_1 \right) \frac{2C_F}{2\pi} dz \, d\ln k_t$
- ► We need to include <u>soft</u> and <u>collinear</u> contributions at LO $dP_i = \frac{\alpha_s(k_t)}{P(z)} dz d \ln k_t$

Emissions separated in just one direction in the Lund plane enter at this order

Constraints kinematic mapping $\Phi_n \rightarrow \Phi_{n+1}$ and ordering variable: emissions well separated in they have similar transverse momentum

Status of NLL PanScales showers

...with subleading colour (2011.10054) and spin correlations (2103.16526, 2111.01161)

DIS & VBF

van Beekveld, SFR, 2305.08645

Status of NLL PanScales showers

► This enabled the <u>PanScales</u> to devise the <u>first</u> showers with <u>general</u> NLL accuracy for DIS & VBF $pp \rightarrow colour \ singlet$ $e^+e^- \rightarrow j_1 j_2$

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez, 2002.11114

van Beekveld, <u>SFR</u>, Soto-Ontoso, Salam, Soyez, Verheyen, 2205.02237, + Hamilton 2207.09467

- (Bewick, SFR, Richardson, Seymour, 1904.11866, 2107.04051)
- ► **Deductor** has been proven to be NLL at least for $e^+e^- \rightarrow j_1j_2$ (Nagy, Soper 2011.04777)
- **Alaric** is NLL at leading colour for $e^+e^- \rightarrow j_1j_2$ (2208.06057), recently extended to generic pp collisions (2404.14360) — expected to retain NLL accuracy for $pp \rightarrow$ colour singlet Silvia Ferrario Ravasio Loopfest XXII

van Beekveld, SFR, 2305.08645

...with subleading colour (2011.10054) and spin correlations (2103.16526, 2111.01161)

Herwig7 angular-ordered shower for the same processes is NLL but only for global event shapes

Exploratory phenomenology for high-mass Drell-Yan at the LHC

Silvia Ferrario Ravasio

Exploratory phenomenology for high-mass Drell-Yan at the LHC

Silvia Ferrario Ravasio

Focus on <u>soft emissions</u>

- Soft-collinear emsns at NLO
- ✓ <u>Soft</u> (large angle) emsns at LO
- Correct rate for pair of emsns separated only in one Lund coordinate

Focus on <u>soft emissions</u>

- Soft-collinear emsns at NLO
- ✓ <u>Soft</u> (large angle) emsns at LO
- Correct rate for pair of emsns separated only in one Lund coordinate

Focus on <u>soft emissions</u>

✓ <u>Soft-collinear</u> emsns at NLO

- ✓ <u>Soft</u> (large angle) emsns at LO
- Correct rate for pair of emsns separated only in one Lund coordinate

Z

Hard emissions at LO ✓ <u>Soft</u> (large angle) emsns at NLO

Focus on <u>soft emissions</u>

- ✓ <u>Soft-collinear</u> emsns at NLO
- ✓ <u>Soft</u> (large angle) emsns at LO
- Correct rate for pair of emsns separated only in one Lund coordinate

Hard emissions at LO ✓ <u>Soft</u> (large angle) emsns at NLO Correct rate for pair of emsns close in the Lund plane

Focus on <u>soft emissions</u>

✓ <u>Soft-collinear</u> emsns at NLO

✓ <u>Soft</u> (large angle) emsns at LO

 Correct rate for pair of emsns separated only in one Lund coordinate

NLL

Hard emissions at LO ✓ <u>Soft</u> (large angle) emsns at NLO Correct rate for pair of emsns

close in the Lund plane

...

Correct rate for pairs or soft emissions = Real corrections

► a given two-emission configuration can come from several shower histories

Correct rate for pairs or soft emissions = Real corrections

- accept a given emission with exact

NLO corrections to a single soft emission: standard behaviour

 \succ For a soft emission

> If this happens also in a parton shower simulation, we have the emission rate correct at $\mathcal{O}(\alpha_s^2)$

NLO corrections to a single soft emission: standard behaviour

 \succ For a soft emission

 \blacktriangleright If this happens also in a parton shower simulation, we have the emission rate correct at $\mathcal{O}(\alpha_s^2)$ ► In a parton shower, virtual corrections are obtained by unitarity (=no emission probability)

At fixed "shower variables", but the rapidity and p_{\perp} of the jet can vary

NLO corrections to a single soft emission: standard behaviour

 \succ For a soft emission

► <u>Catani</u>, <u>Marchesini</u> and <u>Webber</u> defined the "CMW" scheme for the coupling in the shower [*Nucl.Phys.B* 349 (1991) 635-654]

$$\alpha_s^{\text{CMW}} = \alpha_s \left(1 + \left| \frac{\alpha_s}{2\pi} K_1 \right| \right)$$

Additional virtual correction added directly to the splitting function Silvia Ferrario Ravasio Loopfest XXII

 \blacktriangleright If this happens also in a parton shower simulation, we have the emission rate correct at $\mathcal{O}(\alpha_s^2)$ ► In a parton shower, virtual corrections are obtained by unitarity (=no emission probability)

At fixed "shower variables", but the rapidity and p_{\perp} of the jet can vary

Revisiting virtual corrections to a single soft emission

► With our double soft acceptance we have $\mathbf{R}_{\mathbf{PS}} = \mathbf{R}$. This yields

. . . .

Revisiting virtual corrections to a single soft emission

► With our double soft acceptance we have $\mathbf{R}_{\mathbf{PS}} = \mathbf{R}$. This yields

► We modify the CMW scheme

Revisiting virtual corrections to a single soft emission

With our double soft
 acceptance we have
 R_{PS} = **R**. This yields

► We modify the CMW scheme

Silvia Ferrario Ravasio

Virtual corrections to a single soft emission

Virtual corrections to a single soft emission

Augmenting the order of the splitting function used is not sufficient to achieve superior logarithmic accuracy: one first needs to remove the mistakes a shower is making at a given order!

NSL Pheno outlook

S.F.R., Hamilton, Karlberg, Salam, Scyboz, Soyez 2307.11142

- Energy flow in slice between two 1 TeV jets
- Double-soft reduces uncertainty band

Uncertainty here is estimated varying the renormalisation scale

Silvia Ferrario Ravasio

Double-soft "reweighting" for neighbouring soft-collinear emsns

NLO corrections for soft, large-ang $\alpha_s^{\text{eff}}(k_t) = \alpha_s(k_t) \left(1 + \frac{\alpha_s(k_t)}{2\pi}(K_1 + \Delta K_1)\right)$ NLO corrections for soft, large-angle emissons

> Catani, Marchesini, Webber, '91

Double-soft "reweighting" for neighbouring soft-collinear emsns

NLO corrections for soft, large-angle emissons NLO corrections for soft, large-angle $\alpha_s^{\text{eff}}(k_t) = \alpha_s(k_t) \left(1 + \frac{\alpha_s(k_t)}{2\pi}(K_1 + \Delta K_1)\right)$

> Catani, Marchesini, Webber, '91

Drift in rapidity of an emission when it further branches $2C_F d\eta \Delta K_1(\eta) \propto \langle \Delta y \rangle$

 \Rightarrow correct the shower mistake

neighbouring soft-collinear emsns NLO corrections for soft, large-angle emissons $\overset{\text{to}}{\text{H}} \alpha_s^{\text{eff}}(k_t) = \alpha_s(k_t) \left(1 + \frac{\alpha_s(k_t)}{2\pi} (K_1 + \Delta K_1) \right)$ **NNLO corrections** for soft-collinear emsns

> Banfi, El-Menoufi, Monni, 1807.11487

Drift in $\ln k_t$ of an emission when it further branches $\Delta K_2 \propto \beta_0 \langle \Delta \ln k_t \rangle$

\Rightarrow correct the shower mistake At this accuracy, it is sufficient to get the average

NLO corrections for soft, large-angle emissons $\overset{\text{to}}{\text{BS}} \quad \alpha_s^{\text{eff}}(k_t) = \alpha_s(k_t) \left(1 + \frac{\alpha_s(k_t)}{2\pi} (K_1 + \Delta K_1) \right)$ NNLO corrections for soft-collinear emsns $\alpha_s^{\text{eff}}(k_t) = \alpha_s(k_t) \left(\dots + \frac{\alpha_s^2(k_t)}{4\pi^2} (K_2 + \Delta K_2) \right)$

neighbouring soft-collinear emsns

NLO corrections for collinear emsns, $d\mathcal{P}_{\text{coll}} \propto P(z) \left(1 + \frac{\alpha_s}{2\pi} \left(\frac{B_2(z)}{2\pi} + \Delta B_2(z) \right) \right)$

Dasgupta, El-Menoufi 2109.07496, +van Beekveld, Helliwell, Monni 2307.15734, ++*Karlberg* 2402.05170

A new standard for the logarithmic accuracy of parton showers

Melissa van Beekveld,¹ Mrinal Dasgupta,² Basem Kamal El-Menoufi,³ Silvia Ferrario Ravasio,⁴ Keith Hamilton,⁵ Jack Helliwell,⁶ Alexander Karlberg,⁴ Pier Francesco Monni,⁴ Gavin P. Salam,^{6,7} Ludovic Scyboz,³ Alba Soto-Ontoso,⁴ and Gregory Soyez⁸

We report on a major milestone in the construction of logarithmically accurate final-state parton showers, <u>achieving next-to-next-to-leading-logarithmic (NNLL) accuracy for the wide class of ob-</u> servables known as event shapes. The key to this advance lies in the identification of the relation between critical NNLL analytic resummation ingredients and their parton-shower counterparts. Our analytic discussion is supplemented with numerical tests of the logarithmic accuracy of three shower variants for more than a dozen distinct event-shape observables in two final states. <u>The NNLL terms</u> are phenomenologically sizeable, as illustrated in comparisons to data.

COMING SOC

Dasgupta, El-Menoufi 2109.07496, +van Beekveld, Helliwell, Monni 2307.15734, ++Karlberg 2402.05170

ln k / O

The PanScales collaboration, to appear soon

Agreement to data substantially better when using **NNLL** showers

PanScales is first validated NLL shower

- > All processes with **two colour legs** have been rigorously tested to be NLL for both global and non-global event shapes
- \blacktriangleright benefits of LL \rightarrow NLL include reduced uncertainties (reliable estimate) NLO matching in place for some simple processes
- Higher log accuracy is one of the next frontiers
 - Double-soft (+ virtual) corrections: NSL accuracy for non-global event shapes, NNDL accuracy for subjet multiplicites.
 - ► Coming (very) soon: NNLL accuracy for global event shapes in $e^+e^- \rightarrow j_1j_2$
- Public code

https://gitlab.com/panscales/panscales-0.X

The PanScales collaboration, 2312.13275

PanScales is first validated NLL shower

- ► All processes with two colour legs have been rigorously tested to be NLL for both global and non-global event shapes
- \blacktriangleright benefits of LL \rightarrow NLL include reduced uncertainties (reliable estimate)
- NLO matching in place for some simple processes
- Higher log accuracy is one of the next frontiers
 - **NNDL** accuracy for subjet **multiplicites**.
 - ► Coming (very) soon: NNLL accuracy for global event shapes in $e^+e^- \rightarrow j_1j_2$
- Public code

https://gitlab.com/panscales/panscales-0.X

Current matching schemes typically preserve <u>at best</u> the LL... A lot of work to be done!!!

Double-soft (+ virtual) corrections: NSL accuracy for non-global event shapes,

The PanScales collaboration, 2312.13275

► NSL ($\alpha_s^n L^{n-1}$) analytic reference from Banfi, Dreyer, Monni, <u>2104.06416</u>, <u>2111.02413</u> ("Gnole") [NB: see also Becher, Schalch, Xu, 2307.02283]

Non-global observable

NSL ($\alpha_s^n L^{n-1}$) analytic reference from Banfi, Dreyer, Monni, <u>2104.06416</u>, <u>2111.02413</u> ("Gnole") [NB: see also Becher, Schalch, Xu, 2307.02283]

Non-global observable

NSL ($\alpha_s^n L^{n-1}$) analytic reference from Banfi, Dreyer, Monni, <u>2104.06416</u>, 2111.02413 ("Gnole") [NB: see also Becher, Schalch, Xu, <u>2307.02283</u>]

 $\lambda \rightarrow \alpha$ First large- N_c full- n_f results for NSL nonglobal logs

What is available in Shower Monte Carlo generators?

Showers routinely used to interpret LHC (and LEP) data are **not NLL**!

Exploratory phenomenology for Drell-Yan at the LHC

Silvia Ferrario Ravasio

PanScales for $pp \rightarrow$ colour singlet: <u>2207.09467</u>, van Beekveld, SFR, Hamilton, Salam Soto Ontoso, Soyez, Verheyen:

Exploratory phenomenology for Drell-Yan at the LHC

Silvia Ferrario Ravasio

PanScales for $pp \rightarrow$ colour singlet: <u>2207.09467</u>, van Beekveld, SFR, Hamilton, Salam Soto Ontoso, Soyez, Verheyen:

```
This LL shower
lives within the
NLL showers
```


Exploratory phenomenology for Drell-Yan at the LHC

Silvia Ferrario Ravasio

PanScales for $pp \rightarrow$ colour singlet: <u>2207.09467</u>, van Beekveld, SFR, Hamilton, Salam Soto Ontoso, Soyez, Verheyen:

Scale uncertainty not enough!

What can be available in Shower Monte Carlo generators?

- (and LEP) data are **not NLL**!

