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“Fast” Machine Learning

= Machine Learning has had a major impact on
how high energy particle physics research is
conducted.

= Typical use involves separation of a signal
class from a background class, using
multiple inputs for discrimination. (BDT,
NN, etc.)

= What is “fast” machine learning?
= Accelerating the speed of ML algorithms.

= Classifying information in real-time, taking
into account constraints in latency,
bandwidth, and throughput.

= Often requires specific hardware.

(From dedicated workshop at SMU)
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Fast M1, Uses for ATLAS at the LHC

= The ATLAS detector at the LHC collects a massive
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3

Event Reconstruction

= Reconstructing proton-proton collision events involves challenging pattern-recognition tasks,
given the high number of secondary particles and the high granularity of the detector.

= Traditional algorithms scale poorly to high-luminosity conditions. Some examples include
reconstructing tracks of charged particles and energy reconstruction of high-granularity
calorimeters.

= Many studies are currently underway that make use of graphical neural networks (GNNs) and
heterogenous computing (CPU+GPU or CPU+FPGA) to improve the speed of the algorithm.
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https://www.frontiersin.org/articles/10.3389/fdata.2022.787421/full

Event Simulation

= Simulation of events is necessary for performing
searches and measurements in particle physics.

= Simulation is used to model as-yet-unobserved signals as
well as many major backgrounds.

= MC methods are used to simulate the interactions, and
then GEANT4 is used to simulate the response of the
detector.

= Given the increasingly large ATLAS dataset, simulation
is becoming very expensive.

: Currently reqU]re over half Of the exper]ments ComPUt]ng @® MCsimulation @ MC reconstruction MC event generation
resources, expected to increase with HL-LHC. i ® rowpprotiction. (@ Dt processing

@® Other

= Many efforts to develop ML methods to take over specific
computationally intensive tasks, like modeling of EM
showers, jet reconstruction, or matrix element ATLAS HL-LHC Computing Conceptual Desigh Report

calculations.
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Figure 1: ATLAS CPU hours used by various activities in 2018



https://cds.cern.ch/record/2729668/

Inner Tracker

Calorimeters

Muon System
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Real-Time Analysis

= Collisions occur in the ATLAS experiment at a
rate of 40 MHz. It is impossible to record every
collision event.

= Instead, ATLAS has a trigger system designed to
save physically interesting events.

= This trigger system has two steps (for HL-LHC):

= Level-0 (LO): Reduction of event rates from
40 MHz = 1 MHz, hardware trigger

= High-Level Trigger (HLT): Reduction of event rates
from
1 MHz - 10 kHz, software trigger.

= Already reducing to 2.5% of the event rate at LO!

= These events must be processed very quickly,
O(ps), so complex algorithms not used

= Fast ML is being investigated for applications at
LO, in the Global Trigger.




Fast ML for the Global Trigger

= The goal for the Global Trigger is to bring offline-level criteria to the LO system.

= The system has 48 units accepting data in round robin style, allowing for around a 1.2 ps
latency per algorithm.

= It is all implemented on a Field Programmable Gate Array (FPGA), and each algorithm
can only use a few percent of the FPGAs available resources.

= Data is pipelined to different algorithm units in a modular approach.
= Goal is to have baseline algorithms which may be improved by ML.
= Complication: any ML algorithm must be programmable onto an FPGA.
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Tools for Fast ML: High-Level Synthesis

Co-processing kernel

Custom firmware
design

Example of hls4ml workflow

Designing for Field-Programmable Gate Arrays
(FPGAs) involves additional complications

= FPGAs are programmed using hardware description
languages (HDLs - Verilog and VHDL), not object-
oriented software languages like python or C++.

= Most physicists involved ML development are not well-
versed in HDL.

= |t is not an easy transition, HDL is fundamentally
different from software languages.

= Tools for “high-level synthesis” are often utilized to
allow development in software and translation to HDL.

= hls4ml is one such open source tool.
= Other similar tools include fwXmachina and Conifer.




FPGAs: Definition of Terms
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= One thing that makes FPGAs useful is that they can i
be reprogrammed repeatedly, as opposed to other i O
devices where programming is set on fabrication. | ‘

= Main vendors: Intel and Xilinx - similar performance,
but each company has its own suite of design - i o
software (Intel - Quartus, Xilinx - Vivado).

= Capabilities and available resources for FPGAs
continually advance year-by-year.

= Some Basic FPGA Resources:
= LUT: Look-up Tables

= DSP: Digital Signal Processors
= FF: Flip-flops (basic storage element)
= BRAM: Block Random Access Memory (storing data)



https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/si-agf014.html

Some Uses Explored in Global Trigger

= VBF classifier

= To select events with a vector-boson fusion topology,

relative to multi-jet backgrounds
= fwXmachina, BDT

= Missing Transverse Momentum Regression

= Reconstruction of missing transverse
momentum, expected from neutrinos

= fwXmachina, BDT
- B-tagging algorithm

= Multi-class output to define particle origin of iets

= hls4ml, DNN

= Quark/gluon jet algorithm

= Jet images in eta-phi space are used to
distinguish between jets initiated by
a quark and a gluon.

= hls4ml, CNN
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Diagram of B-tagging algorithm
VBF classifier | MET regression | B-tagging DNN | g/g CNN
Tool fwX (Depth = 4) | fwX (Depth = 6) hls4ml hls4ml
Clock 320 MHz 320 MHz 200 MHz 200 MHz
Latency 22 ns 34 ns 50 ns 1.2 us
LUT 0.23% 0.30% 4.6% 0.63%
DSP 0.029% 0.0% 9.1% 4.5%
FF 0.025% 0.084% 0.41% 0.20%
BRAM 2.2% 0.56% 0.83% 0.42%
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https://iopscience.iop.org/article/10.1088/1748-0221/19/05/P05031

Fast ML for the LAr Calorimeter

= At the HL-LHC, we expect up to 200 simultaneous collisions per bunch crossing (every 25 ns)
= Calorimeter pulse signal has a long tail.

" Img)ortant information is peak time and amplitude - bipolar pulse shaping performed by an CR -
RC? analog circuit, so the peak time can be extracted from multiple sampling points.

= Currently, “Optimal Filtering” technique is used to take samples from the digitized pulse and
evaluate energy and peak time.

= This assumes a perfect signal, with no overlap - ‘out of time pileup’ complicates this.
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Fast ML for the LAr Calorimeter

= Machine learning explored to improve performance for
overlapping signals.

= In this case, strategy is directly designing neural
networks in VHDL, rather than using high-level
synthesis.

= Several approaches have been studied, | show here the
results for Convolutional Neural Networks (CNNs).

= Example shown for 4-layer CNN:
= Input: Calorimeter energy deposits

= Pulse Tagging: Identifies significant energy deposits over
background

= Energy Reconstruction: Detection probability and sample
sequence input, reconstructs energy.

= Qutput: Reconstructed energy.

(For this slide and next) Georges Aad et al. Artificial Neural Networks on FPGAs for Real-Time Energy
Reconstruction of the ATLAS Lar Calorimeters. In: Computing and Software for Big Science 5.1 (Oct.

2021) DOI: 10.1007/s41781-021-00066-y. URL.:
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https://doi.org/10.1007/s41781-021-00066-y

= Energy Reconstruction: Use of a CNN shows clear improvement over

Fast ML for the LAr Calorimeter

= Pulse Tagging: Use of CNN shows a clear improvement over the
Optimal Filter method.

Optimal Filer method for small ‘gaps’, where pulses have fewer bunch-
crossings in between.

= Design Constraints: Currently NN implementation fits within FPGA
resource requirements and 150 ns latency requirement.
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“On-Detector” Uses

= Up until now, we have spoken of “off-detector” electronics, which receive information from the
detectors at the LHC (e.g. ATLAS, CMS...) but are not physically located on the detectors
themselves.

= Detectors at the LHC are very complex, and part of the job of “on-detector” electronics is to
compress event data for transmission to off-detector electronics.

= These electronics are subject to radiation
= They are typically low-power, radiation hard ASICs (Application-Specific Integrated Circuits)
= Simple algorithms are used to sacrifice as little physics information as possible.

= Use of fast ML on ASICs has been explored by CMS, for instance, to improve readout granularity
on the High-Granularity Endcap Calorimeter.

= Unlike FPGAs, ASICs cannot be completely reprogrammed - the firmware would need to be
finalized prior to fabrication and could not be changed.

= Could change NN weights by implementing them as configurable registers.

This is an area that might be of interest for the future!
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Summary

= There are many aspects of experimental research at the LHC that can benefit from “fast”
machine learning.

= What | have highlighted today are examples of R&D and use of fast ML at LHC
experiments, not a comprehensive look at all work that is being performed.

= | encourage people to explore the and associated annual
international workshops for a broad look at the use of ML in high energy particle physics
as well as many other science domains.

Thank you for your attention! Any questions?
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https://fastmachinelearning.org/
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