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§ Machine Learning has had a major impact on 
how high energy particle physics research is 
conducted. 
§ Typical use involves separation of a signal 

class from a background class, using 
multiple inputs for discrimination. (BDT, 
NN, etc.)

§ What is “fast” machine learning?
§ Accelerating the speed of ML algorithms.
§ Classifying information in real-time, taking 

into account constraints in latency, 
bandwidth, and throughput.

§ Often requires specific hardware.
(From dedicated workshop at SMU)
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§ The ATLAS detector at the LHC collects a massive 
amount of data, and this will only increase in the 
high-luminosity era (2029+). Algorithms can:
§ Be computationally expensive
§ Not be comfortably scalable
§ Require more time than is available

§ Acceleration of ML algorithms is one way to address 
these limitations moving forward. Applications are 
being explored for:  
§ Event reconstruction
§ Event simulation
§ Real-time analysis at 40 MHz
§ On-detector applications
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§ Reconstructing proton-proton collision events involves challenging pattern-recognition tasks, 
given the high number of secondary particles and the high granularity of the detector.

§ Traditional algorithms scale poorly to high-luminosity conditions. Some examples include 
reconstructing tracks of charged particles and energy reconstruction of high-granularity 
calorimeters.

§ Many studies are currently underway that make use of graphical neural networks (GNNs) and 
heterogenous computing (CPU+GPU or CPU+FPGA) to improve the speed of the algorithm.

Fast Machine Learning Applications for Science
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§ Simulation of events is necessary for performing 
searches and measurements in particle physics.
§ Simulation is used to model as-yet-unobserved signals as 

well as many major backgrounds.
§ MC methods are used to simulate the interactions, and 

then GEANT4 is used to simulate the response of the 
detector.

§ Given the increasingly large ATLAS dataset, simulation 
is becoming very expensive.
§ Currently require over half of the experiments computing 

resources, expected to increase with HL-LHC.
§ Many efforts to develop ML methods to take over specific 

computationally intensive tasks, like modeling of EM 
showers, jet reconstruction, or matrix element 
calculations.

ATLAS HL-LHC Computing Conceptual Design Report
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§ Collisions occur in the ATLAS experiment at a 
rate of 40 MHz. It is impossible to record every 
collision event.

§ Instead, ATLAS has a trigger system designed to 
save physically interesting events.

§ This trigger system has two steps (for HL-LHC):
§ Level-0 (L0): Reduction of event rates from 

40 MHz à 1 MHz, hardware trigger
§ High-Level Trigger (HLT): Reduction of event rates 

from 
1 MHz à 10 kHz, software trigger.

§ Already reducing to 2.5% of the event rate at L0! 
§ These events must be processed very quickly, 

O(µs), so complex algorithms not used

§ Fast ML is being investigated for applications at 
L0, in the Global Trigger. 
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§ The goal for the Global Trigger is to bring offline-level criteria to the L0 system.

§ The system has 48 units accepting data in round robin style, allowing for around a 1.2 µs 
latency per algorithm.

§ It is all implemented on a Field Programmable Gate Array (FPGA), and each algorithm 
can only use a few percent of the FPGAs available resources. 

§ Data is pipelined to different algorithm units in a modular approach.

§ Goal is to have baseline algorithms which may be improved by ML.

§ Complication: any ML algorithm must be programmable onto an FPGA.
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Designing for Field-Programmable Gate Arrays 
(FPGAs) involves additional complications

§ FPGAs are programmed using hardware description 
languages (HDLs - Verilog and VHDL), not object-
oriented software languages like python or C++.

§ Most physicists involved ML development are not well-
versed in HDL.

§ It is not an easy transition, HDL is fundamentally 
different from software languages.

§ Tools for “high-level synthesis” are often utilized to 
allow development in software and translation to HDL.

§ hls4ml is one such open source tool.

§ Other similar tools include fwXmachina and Conifer.

Example of hls4ml workflow 
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§ One thing that makes FPGAs useful is that they can 
be reprogrammed repeatedly, as opposed to other 
devices where programming is set on fabrication.

§ Main vendors: Intel and Xilinx – similar performance, 
but each company has its own suite of design 
software (Intel – Quartus, Xilinx – Vivado).

§ Capabilities and available resources for FPGAs 
continually advance year-by-year.

§ Some Basic FPGA Resources:
§ LUT: Look-up Tables
§ DSP: Digital Signal Processors
§ FF: Flip-flops (basic storage element)
§ BRAM: Block Random Access Memory (storing data)

Intel Agilex Development Kit
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https://www.intel.com/content/www/us/en/products/details/fpga/development-kits/agilex/si-agf014.html


§ VBF classifier
§ To select events with a vector-boson fusion topology, 

relative to multi-jet backgrounds
§ fwXmachina, BDT

§ Missing Transverse Momentum Regression
§ Reconstruction of missing transverse 

momentum, expected from neutrinos
§ fwXmachina, BDT

§ B-tagging algorithm
§ Multi-class output to define particle origin of jets
§ hls4ml, DNN

§ Quark/gluon jet algorithm
§ Jet images in eta-phi space are used to 

distinguish between jets initiated by 
a quark and a gluon.

§ hls4ml, CNN

Diagram of B-tagging algorithm

10.1088/1748-0221/19/05/P05031
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§ At the HL-LHC, we expect up to 200 simultaneous collisions per bunch crossing (every 25 ns)
§ Calorimeter pulse signal has a long tail.

§ Important information is peak time and amplitude – bipolar pulse shaping performed by an CR − 
RC2 analog circuit, so the peak time can be extracted from multiple sampling points.

§ Currently, “Optimal Filtering” technique is used to take samples from the digitized pulse and 
evaluate energy and peak time.

§ This assumes a perfect signal, with no overlap – ‘out of time pileup’ complicates this.
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§ Machine learning explored to improve performance for 
overlapping signals.

§ In this case, strategy is directly designing neural 
networks in VHDL, rather than using high-level 
synthesis.

§ Several approaches have been studied, I show here the 
results for Convolutional Neural Networks (CNNs).

§ Example shown for 4-layer CNN:
§ Input: Calorimeter energy deposits
§ Pulse Tagging: Identifies significant energy deposits over 

background
§ Energy Reconstruction: Detection probability and sample 

sequence input, reconstructs energy.
§ Output: Reconstructed energy. 

(For this slide and next) Georges Aad et al. Artificial Neural Networks on FPGAs for Real-Time Energy 
Reconstruction of the ATLAS Lar Calorimeters. In: Computing and Software for Big Science 5.1 (Oct. 
2021) DOI: 10.1007/s41781-021-00066-y. URL: https://doi.org/10.1007/s41781-021-00066-y.
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§ Pulse Tagging: Use of CNN shows a clear improvement over the 
Optimal Filter method.

§ Energy Reconstruction: Use of a CNN shows clear improvement over 
Optimal Filer method for small ‘gaps’, where pulses have fewer bunch-
crossings in between.

§ Design Constraints: Currently NN implementation fits within FPGA 
resource requirements and 150 ns latency requirement.
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§ Up until now, we have spoken of “off-detector” electronics, which receive information from the 
detectors at the LHC (e.g. ATLAS, CMS…) but are not physically located on the detectors 
themselves.

§ Detectors at the LHC are very complex, and part of the job of “on-detector” electronics is to 
compress event data for transmission to off-detector electronics.
§ These electronics are subject to radiation
§ They are typically low-power, radiation hard ASICs (Application-Specific Integrated Circuits)
§ Simple algorithms are used to sacrifice as little physics information as possible.

§ Use of fast ML on ASICs has been explored by CMS, for instance, to improve readout granularity 
on the High-Granularity Endcap Calorimeter.

§ Unlike FPGAs, ASICs cannot be completely reprogrammed – the firmware would need to be 
finalized prior to fabrication and could not be changed.
§ Could change NN weights by implementing them as configurable registers.

This is an area that might be of interest for the future!

14



§ There are many aspects of experimental research at the LHC that can benefit from “fast” 
machine learning.

§ What I have highlighted today are examples of R&D and use of fast ML at LHC 
experiments, not a comprehensive look at all work that is being performed.

§ I encourage people to explore the Fast Machine Learning Lab and associated annual 
international workshops for a broad look at the use of ML in high energy particle physics 
as well as many other science domains.

Thank you for your attention! Any questions?
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