

Two Photon Absorption – Transient Current Technique

Results of TCAD Simulation of TPA-TCT in a pad detector & Influence of Radiation Damage on the TPA-TCT

Marcos Fernández García^{1,2}, Michael Moll¹, Sebastian Pape^{1,3}, Moritz Wiehe¹

¹CERN ²Instituto de Física de Cantabria ³TU Dortmund University

https://indico.cern.ch/event/1334364/

29.11.2023

43rd RD50 workshop – S. Pape at CERN

Federal Ministry of Education and Research

Table of content

Part I

Results of TCAD simulation of TPA-TCT in a pad detector

Part II Continuation of my 42nd RD50 talk

Comparison between neutron, proton, and gamma irradiated samples

Influence on the linear absorption coefficient and refractive index

Radiation damage and the TPA-TCT

Part I Results of TCAD Simulation of TPA-TCT in a pad detector

29.11.2023

Plots

from

ŝ

Pape

Thesis (2024)

TCAD simulation of TPA-TCT: Definitions

- The threshold is defined as a certain fraction of the amplitude
- Calculated individually for each waveform

- Beginning of signal: found by fit to the rising edge
- PC: Current at a given time t_{pc} after the beginning
- Q_{coll} : Integral of the current transient until a given time t_{coll}
- Weighted prompt current: $I(t_{pc}) / Q_{coll}$

Details: https://doi.org/10.3390/s23020962

Closer look on the ToT profile:

- Where do the maxima at the boundaries originate from?
 - → Expectation: ToT is constant beyond the boundaries as charge is deposited at the maximum positions

Closer look on the ToT profile:

- Where do the maxima at the boundaries originate from?
 - → Expectation: ToT is constant beyond the boundaries as charge is deposited at the maximum positions
 - → The maxima originate from the assumption that the focal point positions aligns with the position of the dominant contribution to the current transient

TPA charge carrier density along depth:

The median is central when the full distribution is inside the active volume.

Definition:

The median is the position of the main contribution to the charge generation. It is calculated as the position where the integral of the excess charge carrier density reaches 50%.

Closer look on the ToT profile:

- Where do the maxima at the boundaries originate from?
 - → Expectation: ToT is constant beyond the boundaries as charge is deposited at the maximum positions
 - → The maxima originate from the assumption that the focal point positions aligns with the position of the dominant contribution to the current transient

TPA charge carrier density along depth:

The median is central when the full distribution is inside the active volume, **but the median position shifts when one is close to the boundaries.**

This causes the ToT to become "symmetric" around the boundaries!

Closer look on the ToT profile:

- Where do the maxima at the boundaries originate from?
 - → Expectation: ToT is constant beyond the boundaries as charge is deposited at the maximum positions
 - → The maxima originate from the assumption that the focal point positions aligns with the position of the dominant contribution to the current transient

TPA charge carrier density along depth:

The median is central when the full distribution is inside the active volume, **but the median position shifts when one is close to the boundaries.**

This causes the ToT to become "symmetric" around the boundaries!

43rd RD50 workshop – S. Pape

29.11.2023

Plots

from

S. Pape

Thesis

(2024)

Closer look on the WPC profile:

1) Where do the valleys at the boundaries originate from?

- \rightarrow Expectation: E-Field of PIN is linear and is maximal at the top side
- \rightarrow Depth of valleys increases with the $t_{\rm pc}$

Closer look on the WPC profile:

1) Where do the valleys at the boundaries originate from?

- \rightarrow Expectation: E-Field of PIN is linear and is maximal at the top side
- \rightarrow Depth of valleys increases with the $t_{\rm pc}$
- \rightarrow It is not an effect of the readout electronics as it also appears in the non-convoluted WPC

Closer look on the WPC profile:

1) Where do the valleys at the boundaries originate from?

- \rightarrow Expectation: E-Field of PIN is linear and is maximal at the top side
- \rightarrow Depth of valleys increases with the $t_{\rm pc}$
- \rightarrow It is not an effect of the readout electronics as it also appears in the non-convoluted WPC

1) Valleys are related charge collection during $t_{pc} \rightarrow not$ all the injected carriers contribute to the transient current at $t_{pc} \rightarrow lower$ prompt current

Closer look on the WPC profile:

1) Where do the valleys at the boundaries originate from?

- \rightarrow Expectation: E-Field of PIN is linear and is maximal at the top side
- \rightarrow Depth of valleys increases with the $t_{\rm pc}$
- \rightarrow It is not an effect of the readout electronics as it also appears in the non-convoluted WPC
- 2) Where does the symmetry around the boundaries comes from?

1) Valleys are related charge collection during $t_{pc} \rightarrow not$ all the injected carriers contribute to the transient current at $t_{pc} \rightarrow lower$ prompt current

Closer look on the WPC profile:

1) Where do the valleys at the boundaries originate from?

- \rightarrow Expectation: E-Field of PIN is linear and is maximal at the top side
- \rightarrow Depth of valleys increases with the $t_{\rm pc}$
- \rightarrow It is not an effect of the readout electronics as it also appears in the non-convoluted WPC
- 2) Where does the symmetry around the boundaries comes from?

- 1) Valleys are related charge collection during $t_{pc} \rightarrow not$ all the injected carriers contribute to the transient current at $t_{pc} \rightarrow lower$ prompt current
- 2) Same argument as for the symmetry in the ToT \rightarrow median of the excess charge distribution shifts at boundaries

Part II Influence of Radiation Damage on the TPA-TCT

Details about the used samples

Design of the planar sensors:

CiS16 FZ planar diodes, p-type, >10k Ω ·cm, 2.632×2.632mm² active area

Thickness [µm]	Type of irradiation	Facility	Fluence	Annealing
300	Neutron	TRIGA JSI	$\leq 7.02 \times 10^{15}$ n / cm2	10 min @ 60°C 6600 min @ 20 °C
156	Neutron	TRIGA JSI	$\leq 7.02 \times 10^{15}$ n / cm2	10 min @ 60 °C 6600 min @ 20 °C
156	Proton	CERN PS (23GeV)	$\leq 1.17 \times 10^{16}$ p / cm2	10 min @ 60 °C 6600 min @ 20 °C
156	Gamma	IRB Zagreb (⁶⁰ Co)	< 200 Mrad	None

Measurement temperature: (-20±0.1) °C Humidity: flushed with dry air (~0%)

43rd RD50 workshop – S. Pape

29.11.2023

metal

Influence of radiation damage on the TPA-TCT

 \rightarrow Radiation damage can introduce new energy levels in the band gap that trap charge carriers

- \rightarrow Trapped charge carriers can be excited by a single 1550 nm photon
- \rightarrow This enables a parasitic single photon absorption component to the TPA-TCT measurement
 - In depth measurements of neutron irradiated PINs:

- → Additional SPA component is found as a offset, as it is not depth dependent $Q_{\text{SPA}}(z) = \text{const}$
- \rightarrow Different methods to correct this SPA component were developed

In-depth scans:

Neutron & proton irradiation:

- \rightarrow Both lead to a SPA offset
- \rightarrow Charge loss depends on depth position of charge deposition
- \rightarrow for the picked fluence they both show a double junction (see prompt current plots in the backup)

In-depth scans (SPA corrected):

technische universität

dortmund

Gamma irradiation:

- \rightarrow No SPA offset visible!
- \rightarrow Charge loss is constant throughout the device depth

29.11.2023

Neutron & Proton irradiated PIN: Prompt current profiles

Neutron irradiation 7.02·10¹⁵ n/cm²:

23 GeV proton irradiation $1.17 \cdot 10^{16} \text{ p/cm}^2$ ($\Phi_{eq} \approx 7.25 \cdot 10^{15}/\text{cm}^2$):

 \rightarrow Both detectors show a double junction, but the maximum of electric field and growth direction appears on opposite sites

Neutron & Proton irradiated PIN: Prompt current profiles

Neutron irradiation 7.02·10¹⁵ n/cm²:

23 GeV proton irradiation $1.17 \cdot 10^{16} \text{ p/cm}^2$ ($\Phi_{eq} \approx 7.25 \cdot 10^{15}/\text{cm}^2$):

 \rightarrow Both detectors show a double junction, but the maximum of electric field and growth direction appears on opposite sites

- \rightarrow Proton irradiated device appears inverted compared to the neutron irradiated one.
- \rightarrow "Space charge sign inversion" in FZ p-type at high proton irradiation!

29.11.2023

Plots from S.

Pape Thesis (2024)

Influence of irradiation on the linear absorption coefficient α

Irradiation changes the linear absorption [Fan et al., Fretwurst et al.].

 \rightarrow The absorption coefficient is linked to the amount of generated charge and measured by the collected charge:

$$\alpha_{\rm eff} = -\frac{1}{d} \ln \left(1 - Q_{\rm SPA} \frac{\hbar \omega}{eE_{\rm p}} \right) \qquad \qquad Q_{\rm SPA}: \text{ charge only generated by linear absorption} \\ \text{d: device thickness}$$

If all charge is collected, $\alpha_{eff} = \alpha_{irr}$ as defined by Fretwurst et al.

Influence of irradiation on the linear absorption coefficient α

Irradiation changes the linear absorption [Fan et al., Fretwurst et al.].

 \rightarrow The absorption coefficient is linked to the amount of generated charge and measured by the collected charge:

$$\alpha_{\rm eff} = -\frac{1}{d} \ln \left(1 - Q_{\rm SPA} \frac{\hbar \omega}{eE_{\rm p}} \right) \qquad \qquad Q_{\rm SPA}: \text{charge only generated by linear absorption} \\ \text{d: device thickness}$$

If all charge is collected, $\alpha_{eff} = \alpha_{irr}$ as defined by Fretwurst et al.

α_{eff} for different thicknesses and fluences:

- Increasing bias voltages saturate the α_{eff} , when charge loss saturates
- Higher thickness increases the needed voltage to saturate the *Q*_{SPA}
- Thickness should not influence α_{eff}
- Highest fluences do not saturate *Q*_{SPA}

29.11.2023

29.11.2023

Plots from

ŝ

Influence of irradiation on the linear absorption coefficient α

Irradiation changes the linear absorption [Fan et al., Fretwurst et al.].

 \rightarrow The absorption coefficient is linked to the amount of generated charge and measured by the collected charge:

$$\alpha_{\rm eff} = -\frac{1}{d} \ln \left(1 - Q_{\rm SPA} \frac{\hbar \omega}{eE_{\rm p}} \right) \qquad \qquad Q_{\rm SPA}: \text{ charge only generated by linear absorption} \\ \text{d: device thickness}$$

If all charge is collected, $\alpha_{eff} = \alpha_{irr}$ as defined by Fretwurst et al.

α_{eff} for different thicknesses and fluences:

- Increasing bias voltages saturate the α_{eff} , when charge loss saturates
- Higher thickness increases the needed voltage to saturate the *Q*_{SPA}
- Thickness should not influence α_{eff}
- Highest fluences do not saturate Q_{SPA}
- Proton and neutron irradiation leads to similar results → Cluster defect related [Fretwurst et al.]

43rd RD50 workshop – S. Pape

Citations: H.Y. Fan and A.K. Ramdas - Infrared Absorption and Photoconductivity in Irradiated Silicon

E. Fretwurst et al. - Study of the V_2^0 state in neutron-

irradiated silicon using photon-absorption measurements 23

Influence of irradiation on the refractive index

The laser beam moves different in silicon and air, due to the higher refractive index. The scaling factor $s=z_{\rm Si}/z$ is related to the refractive index:

$$n^2=\sqrt{\frac{(\gamma-s^2)^2}{4}+\gamma}-\frac{\gamma-s^2}{2}\,,$$

with $\gamma = (\lambda s^2)/(\pi z_{\rm R})$.

Influence of irradiation on the refractive index

The laser beam moves different in silicon and air, due to the higher refractive index. The scaling factor $s = z_{\rm Si}/z$ is related to the refractive index:

$$n^2 = \sqrt{\frac{(\gamma - s^2)^2}{4} + \gamma} - \frac{\gamma - s^2}{2} \,,$$

with $\gamma = (\lambda s^2)/(\pi z_{\rm B})$.

Extracting the device thickness and comparing them to the non-irrad. device allows to calculate the change in the refractive index.

Changes in *n* for fluences up to $\Phi_{eq} = 3.32 \cdot 10^{14} / \text{cm}^2$ and doses up to 186 Mrad are at least < 5.5 %.

Uncertainty in the measurements is large, but shows that changes in *n* are at least not dominant.

Extracted refractive index: Reactor neutrons ---- 23 GeV protons

Plot from

Summary

- TPA-TCT measurements can be simulated with TCAD
 - \rightarrow Measurements in a pad detector are well reproduced \rightarrow all qualitative features found
- Prompt current (PC) and weighted PC have problems at the device boundaries
 - → Charge collection during t_{pc} lowers the PC; shorter t_{pc} help to reduce the problems, but are limited by readout electronics
- Systematic study of influence of radiation damage on the TPA-TCT \rightarrow n, p, γ irradiation
- "Space charge sign inversion" in proton irradiated FZ p-type ($\Phi_{eq} \approx 7.25 \cdot 10^{15}$ /cm²)
- Effective linear absorption coefficient similar at same Φ_{eq} for neutron and proton irrad. devices \rightarrow Cluster damage related
- Medium fluences/doses ($\Phi_{eq} = 3.32 \cdot 10^{14}$ /cm² and 186 Mrad) do not significantly change the refractive index *n*

FRI

Rad. damage

Thank you!

This work has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761 (AIDAinnova) and the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 13E18CHA).

43rd RD50 workshop – S. Pape

Federal Ministry of Education and Research

BACKUP

TPA-TCT: Setup & Calibration

Sketch of the TPA-TCT setup at CERN SSD:

Calibration:

Pulse energy against generated charge (in a 300 µm PIN):

M. Wiehe et al.:

29.11.2023

Development of a Tabletop Setup for the Transient Current Technique Using Two-Photon Absorption in Silicon Particle Detectors

29.11.2023

TPA-TCT setup at CERN SSD

TPA-TCT setup: Inside of the Faraday cage

