

43rd RD50 Workshop

Beam test characterization of RD50-MPW3

Bernhard Pilsl on behalf of the HV-CMOS working group <u>bernhard.pilsl@oeaw.ac.at</u>

AUSTRIAN ACADEMY OF SCIENCES

The RD50-MPW3

- HV-CMOS chip fabricated in LFoundry 150nm process
- Large collection electrode design
- 64 x 64 Pixel with pitch of 62µm
 - Arranged in 32 double columns
- Full analog and digital electronics inside pixel
- Fast clock at 320MHz
- 8 bit 50ns timestamps for ToT
- Digital periphery
 - I2C server for configuration
 - 8 bit per pixel
 - Data FIFO depth of 32 words for each double column

Reminder: Testbeam at CERN SPS

- Beam test at CERN SPS facility in Oct. 2022
- Severe issues with synchronization

AUSTRIAN CADEMY OF

- Only low statistic runs taken due to bugs in measurement setup
- Total efficiency of ~60% evaluated
- ~Binary spatial resolution measured ~18.9µm

200 -150 -100

-50

100 150 200 x_{track}-x_{hit} [μm]

-150 -100

50 100 150 200 y -y [μm]

Testbeam Setup DESY

- Utilizing Adenium telescope
 - Based on Alpide chip
 - Pitch: 29μm x 26μm
 - 1024 x 512 pixel matrix
 - 6 planes

AUSTRIAN CADEMY OF

- Setup triggered by 2 scintillators operated in coincidence
- Telescope synchronized via trigger-numbers
- DUT (MPW3) synchronized via time-stamps
- Matching done by AIDA2020-TLU
- Electron beam with (mostly) 4.2 GeV, 6kHz used

General Results DESY

- Correlations with very little background observed
 - Well synchronized

AUSTRIAN CADEMY OF SCIENCES

- Std. dev. of residuals show spatial resolution of ${\sim}21.5\mu m$
 - Slightly worse than binary resolution of ~18µm
 - Reason: pointing resolution of telescope and alignment?

General Results DESY (2nd)

- ToT values of ~2.26 LSBs (on 50ns base) measured at 1.25V ~8ke⁻ threshold
- Mean cluster size ~1 pixel / cluster
 - Center of gravity approach to increase spatial resolution not possible

Chip - Efficiency DESY

- ~98% total efficiency encountered at threshold of ~4.09ke⁻ for non-irradiated sample
- After CERN test beam ~60% was the accepted value
- Due to noise issue ~bottom half of the matrix needed to be masked (number of masked rows indicated by numbers in brackets)

Results irradiated sample DESY

- Samples irradiated with 10¹⁴ 1MeV n_{eq} at JSI in Ljubljana
- Efficiency values in green correspond to irradiated sample
 - Efficiency decreases after irradiation
- Noise also increases (more rows masked)
- ToT decreases with irradiation (shown at 1.15V ~5600e⁻ thr.)
 - Mean Non-irradiated: 2.53 LSBs
 - Mean Irradiated: 1.98 LSBs
- Cluster-size and spatial resolution basically unchanged

In-Pixel Efficiency DESY

RD50_MPW3_base_0 Pixel efficiency map

- In-pixel efficiency (shown for 1.15V ~ 5.6ke⁻ thr.) shows worse efficiency in corners
- Cluster size map shows increased clustersize in the corners
 - Tracks intersecting pixel corners cause bigger clusters → Charge sharing
- Charge sharing with neighboring pixels attenuated due to high threshold

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

The Piggy Board

Additional PCB

AUSTRIAN CADEMY OF

- Allows to operate two RD50-MPW3s with only one Caribou system
- High speed signals connected via ethernet cable
- Supply voltages connected via standard ribbon cable
- Was also installed at *DESY*, but DAQ was not able to synchronize data
- Intended use:
 - Easier to install / exchange in a telescope than base board (base needs to be plugged into the CaRboard)

Setup MedAustron

- MedAustron is a medical facility located close to Vienna
 - 50 km from *HEPHY*, beam time ~once a month
- Telescope with 4 DSSD planes
 - 512 x 512 "quasi" pixel
 - Pitch: 100μm x 50μm
- Triggered with 2 scintillators operated in coincidence
- 800 MeV proton beam with ~10kHz rate
 - No MIPs

AUSTRIAN

- 2 DUTs
 - Base board 1.9kΩcm non-irradiated
 - Piggy board 3kΩcm non-irradiated
 - 32 bottom rows masked
 - Threshold 1.25V ~ 7900e⁻
 - Biased to -90V

MedAustron

MedAustron Results

- Managed to properly synchronize Piggy board
- Correlations show increased background compared to *DESY* results
 - Synchronization parameters of the DSSDtelescope not known as well
- Total-efficiency Base 74.21(±0.18)%

AUSTRIAN CADEMY OF

- Efficiency at this threshold (~8ke⁻) at DESY: ~79.2%
- Total-efficiency Piggy 86.33(±0.16)%
- Corner effects for in-pixel plots less pronounced, reason: lack of statistics

MedAustron: Extending the telescope

- Sacrificing one DUT in Corryvreckan analysis to act as extra telescope plane
 - Require 5 telescope-hits for each track
 - Yielding ~18 times less tracks

AUSTRIAN CADEMY OF

- Allows to counter systematic (synchronization) errors in the analysis (same DAQ used for both DUTs)
- Tracks get better resolution
- Efficiency base 81.73(+0.38, -0.39)%
 - In better agreement with DESY
- Efficiency piggy 92.26(+0.28, -0.29)%
- Misalignment of base and piggy \rightarrow Only small area of chip taken into account

Discrepancies

- Base vs. Piggy:
 - ~10% higher efficiency for MPW3 on Piggy
 - Only significant difference: resistivity of substrate
 - Differences also seen in ToT values
 - 1.9kΩcm: 1.94 LSB
 - 3kΩcm: 2.68 LSB
 - Different threshold behavior?
 - Greater depletion depth for 3kΩcm substrate?
 - Work in progress
- MedAustron vs. DESY
 - Efficiency at MedAustron ~2% higher at same threshold
 - Lower beam energy at $MedAustron \rightarrow More energy deposited in detector$

Outlook

- MPW3:
 - Work on Allpix² simulations started
 - Aiming to reproduce *DESY*-TB results to improve understanding of chip
 - Annealing studies with irradiated samples
- MPW4:
 - Should be delivered by *LFoundry* in the next few weeks
 - Noise issue should (hopefully) be resolved
 - Lab work: I-V measurements, proper calibration with injections
 - 2 Beam test campaigns already scheduled in 2024
 - End of Mar. at *MedAustron*
 - End of Apr. at DESY

SCIENCES

- Thanks for your attention!
- Questions?

AUSTRIAN ACADEMY OF SCIENCES

BACKUP

Bernhard Pilsl

AUSTRIAN ACADEMY OF SCIENCES

Base DAQ

- Caribou system
- Implemented Peary Device
 - Custom I2C interface (16 bit addresses)
- GUI for configuration
 - Generating Peary config files

Testbeam DAQ

- Fully integrated into EUDAQ2
- CaribouProducer too slow for full read-out rate
 - Only used for run-control commands
- Custom UDP (1 Gbit/s) Data-Collector implemented
 - Multi–threaded approach
 - More like a EUDAQ-producer, but directly storing to disk
- EUDAQ-monitor integrated in GUI
- EUDAQ-Producer for submission of run info to ELog server
- Analysis done with Corryvreckan S

DAQ improvements

• Problem at CERN: synchronization

AUSTRIAN CADEMY OF

- 1 global timestamp for ~1300 hits
- Data preprocessor looking for overflows in TS-LE to refine hittimestamps
- FW adjustments allow for global timestamp for ~each hit

CERN 2022				
	UDP	Pack 64 bit counter		
	Frame	SoF 0xAF00A124 Hit 0x10F31210 Hit 0x193E3836 EoF 0xE000A143 8 bit		
	Frame	Sof 0xAF01F330 Hit 0x1CDC2A29 Hit 0x0B7E4A48 EOF 0xE001F331 Overflow		
	Frame	SoF 0xAF0900A0 Hit 0x08D84848 EoF 0xE00000A9		
	Frame	SOF 0xAF001306 Hit 0x10454F4D Hit 0x1CDA928D EOF 0xE0001307		
	Frame			

Improved 2023

UDP	UDP Pack			
Frame	SoF 0xAF013187 Hit 0x10454F4D EoF 0xE0000008	24 bit LSB global TS 24 bit MSB global TS		
Frame	SoF 0xAF8131E6 Hit 0x1CDA928D EoF 0xE0000008			
Frame	SoF 0xAF0131ED Hit 0x18524848 EoF 0xE0000008			
Frame	SOF 0xAF8131EB Hit 0x16E64847 Hit 0x1F55E9E7 EOF 0xE0000009			
Frame				

The Noise Issue

- Shared power lines between pixel matrix and . digital periphery
 - High noise occurrence in bottom rows correlated to digital activity
- Analog simulations as reported in last RD50 . workshop reproduced the measured behavior
- Changes in design of upcoming RD50-MPW4 . should (hopefully) fix this behavior

AUSTRIAN ACADEMY OF SCIENCES

AUSTRIAN ACADEMY OF SCIENCES

Efficiency too high?

- According to (Allpix²) simulations MPV of deposited charge ~46ke⁻ in 300µm silicon with DESY beam
- Assuming depletion depth of 100µm
- (Back of the envelope) calculation yields ≥ 15ke⁻ transferred to implants
- With threshold of ~5ke⁻ efficiency of 98% plausible

