

BONN DMAPS DEVELOPMENTS

FABIAN HÜGGING ON BEHALF OF THE BONN CMOS TEAM

TJ-Monopix2:

- 180 nm TowerSemi CMOS technology
- Small collection electrode
- 2x2 cm² matrix with **33x33 μm²** pixel pitch
- Substrate resistivity >1 k Ω cm

LF-Monopix2:

- 150 nm LFoundry CMOS technology
- Large collection electrode
- 2x1 cm² matrix with **50x150 μm²** pixel pitch
- Substrate resistivity > 2 k Ω cm

Same fast column drain readout architecture (FE-I3 like)

- Latest iteration TJ-Monopix2: 33.04 µm pixel pitch in 512 x 512 pixel matrix (2 x 2 cm²) — - 7 bit TOT resolution (40 MHz BCID clock - 25 ns timing)
- 3 bit in-pixel threshold tuning _
- Communication via four differential lines
- Command-based slow control (taken from RD53B) —
- 160 MHz data output rate (frame-based 8b10b encoding) —
- bdaq53 readout board (from RD53A/B testing)

- Lab tests conducted for threshold and noise measurements
- Design goals: operational threshold \approx 100 e⁻, threshold dispersion < 10 e⁻, ENC \approx 5 e⁻
- In-pixel threshold trimming (3 bit) significantly reduces threshold dispersion to less than design value _
- Operational threshold higher than anticipated, but we will see later that it should not be a problem

TJ-MONOPIX2 LAB TESTS

- Noise (ENC) measured from steepness of S-curve when injecting varying charges
- Mean noise 5.6 e⁻ in accordance with design goal _
- No RTS noise tail observed as in TJ-Monopix1 _
- Allows operation at low thresholds thanks to large S/N ratio
- Reminder: in TJ-Monopix1, operational threshold was O(400 e⁻) which lead to efficiency losses in pixel corners, especially after irradiation

- In-pixel efficiency for standard pixel flavor
- Homogeneous efficiency > 99 % with no losses in the corners, higher than TJ-Monopix1 already
- deviation within error (estimated around 0.1%)

Epi gap in n-layer (30 μm): 99.96 %

– With ~200 e⁻ threshold no difference between samples expected for the observed cluster charge,

Cz gap in n-layer (100 μm): 99.72 %

- Compare different sensor materials (epi 30 µm / Cz 100 µm) regarding cluster size
- As expected from accumulated charge and higher depletion than 30 µm cluster size is significantly larger in 100 µm silicon (not fully depleted)

- High (average) cluster size allows for high spatial resolution; better than $\frac{d}{\sqrt{12}}$ in Cz chip

- Beam tests performed at DESY (10/2023)
- Measure time between scintillator hit and HITOR word from in-pixel discriminator
- Delay gradient along column due to signal propagation -> correct by column-wise line fit
- Trigger delay of cluster vs. seed charge (outliers due to mismatch of delay to proper hit)

- Measure delay between scintillator and HitOr signal with 640 MHz clock
- Estimate in-time ratio of hits in given time window of trigger distance distribution
- For 30 µm epi chip with **n-gap** modification and standard front-end:
 - 99.68 % within 25 ns (ATLAS BX frequency)
 - > 99 % for 20 ns and 15 ns
- Estimate 99.64 % in-time efficiency based on in-time ratio and hit detection efficiency (analysis ongoing)

- Full scale column length with column-drain R/O
- Full in-pixel electronics while reducing the pixel pitch **by 40%** of predecessor
- 6 bit ToT information @ 25 ns
- **4 bit in-pixel threshold tuning**
- 6 front-end variations available
- Differing in CSA, feedback capacitance, tuning
- Successfully thinned down to **100 µm thickness and** backside processed
- Proton irradiated sensors up to 2e15 neq/cm² NIEL damage available
- Powered off during irradiation, annealed 80min @ 60°C

LF-MONOPIX2 SPECIFICATIONS

- Measure leakage current per pixel at -20 °C environmental temperature
- Breakdown at approx. 460 V for unirradiated modules
- **Increase** in leakage current **per pixel 0.5 nA** per 1e15 neq/cm² irradiation step
- Extract gain from linear regression of untuned threshold at different global THR settings
- Smaller feedback capacitance \rightarrow larger gain (and faster rise time of LE)

- Controlled laboratory environment at -20°C
- Homogeneous threshold across matrix at approx. 2 ke⁻ threshold before and after irradiation
 - About 40% increase in ENC after each 1e15 neq/cm² fluence step
- Expected charge MPV of MIP at full depletion 6 ke⁻

L 0.068

- 0.120
- 0.137
- 0.154
- 0.189
- 0.206

- Get calibrated charge MPV from Landau shaped beam spectrum (5 GeV electrons at DESY)
- Necessary voltage for full depletion increases from 15 V before to >100 V after irradiation to 1e15 neq/ cm²
- Large biasing capability enables full depletion even after 2e15 neq/cm² of fluence ToT beam spectrum

- Mostly uniform in-time efficiency (25 ns) across matrix @ 1e15 neq/cm²
 - Measured at 2 ke⁻ threshold and 150 V bias (fully depleted)
- Slight drop to 97.79 % in pixel corners
- Verified decrease in efficiency for lower bias voltages \rightarrow Less collected charge

HIT DETECTION EFFICIENCY STUDIES

- Hit detection and in-time efficiencies > 99% for all matrices after irradiation to 1e15 n_{eq} cm⁻²
- Measured at **2 ke⁻ threshold** and 150 V bias voltage (full depletion)
- Increase in in-time ratio for larger gain front-end variants
- Result **before irradiation** as reference
- Similar threshold of ~2 ke⁻
- 60 V bias voltage (full depletion)
- \rightarrow No significant efficiency loss after irradiation to 1e15 neq/cm² Detailed analysis of results after 2e15 neq/cm² ongoing

HIT DETECTION EFFICIENCY STUDIES

- Two fully working DMAPS with column-drain readout in 2 cm long columns
- TJ-Monopix2:
 - Hit detection efficiency > 99 % for non-irradiated chips across front-end and substrate variants
 - In-time ratio (within 25 ns) > 99 %
- LF-Monopix2:
 - More than 99% in-time efficiency after irradiation to 1e15 n_{eq} cm⁻²
 - Promising results for 2e15 n_{eq} cm⁻² samples, analysis ongoing

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

675587 (Maria Sklodowska-Curie ITN STREAM), 654168 (AIDA-2020), 101004761 (AIDAinnova), and 101057511 (EURO-LABS).

- This project has received funding from the Deutsche Forschungsgemeinschaft DFG (grant WE 976/4-1), the German Federal Ministry of Education and Research BMBF (grant 05H15PDCA9), and the European Union's Horizon 2020 research and innovation program under grant agreements no.

BACKUP

✓ Optimized individual parts ✓ High rad. tolerance

X Cost and labor intensive bump-bonding

Reduced material budget ✓ Commercial processes: Fast & high volume

- production
- Lower module cost

X Sensor not fully depleted Not radiation hard

DEPLETED MONOLITHIC ACTIVE PIXEL SENSOR

- CMOS processes offer high-resistivity substrate
- Bias voltage capabilities (HV)

✓ Strong drift field Enhanced charge collection \rightarrow Increased radiation tolerance

- TJ-Monopix is line of DMAPS designed in a 180 nm Tower CMOS process based on ALPIDE sensor for ALICE ITS upgrade
- Small collection electrode for operations with low power and low noise
- Designed for ATLAS ITk outer layer specs with column-drain readout like in FE-I3 in a 2 cm column
- Pixel readout capable of dealing with hit rate > 100 MHz / cm²
- Goal: 10¹⁵ 1 MeV ^{neq}/_{cm2} NIEL tolerance and 100 MRad TID
- Low dose n-type implant for homogeneous depletion of sensor volume (initial design)
- Radiation hardness not straight-forward in small collection electrode design

TJ-MONOPIX DESIGN

- Extensive tests performed in 2018 at ELSA beam line (2.5 GeV electrons) in Bonn
- Significant efficiency loss after irradiation to < 70 % (at 10^{15} neq cm⁻²)
- Charge is lost due to E-field shaping under deep pwell -> need another modification besides low dose n-type

RADIATION HARDNESS TJ-MONOPIX1

- Low electric field below deep p-well in
- well) below readout electronics to shape electrical field towards collection node

IMPROVED SENSOR DESIGN

- Measured 10^{15} neq cm⁻² irradiated chips in 5 GeV electron beam at DESY
- Efficiency improvement in epi chip from 69 % to 87 % due to sensor modifications ____
- More sensitive volume and more charge in Cz leads to full efficiency after irradiation _

RADIATION HARDNESS NEW DESIGN

300 µm Cz: 98.6 % @ 490 e-

- Threshold in TJ-Monopix1 mostly limited by unexpectedly high noise
- Tail identified as RTS noise

- Enlarged transistors for smaller noise and threshold (tested in miniMALTA before TJ-Monopix2 (CERN))

- Investigated samples (unirradiated): ____
 - epitaxial silicon (30 µm thickness) with gap in n-layer —
 - Czochralski silicon (100 µm thickness) with gap in n-layer _
 - —
- All samples operating at a threshold of ~200 e⁻

TJ-MONOPIX2 BEAM TESTS

Beam tests performed at DESY in November 2022 (5 GeV electron beam, Mimosa26 telescope)

Type of silicon growth (epi vs Cz) not part of investigation, but thickness of sensitive volume

- Cluster charge (MPV) for standard pixel flavor
- Cz sample has higher MPV since depletion is not limited by thickness of epi layer (30 μm)
- Still not fully depleted because of -6 V bias voltage on substrate and p-wells on top of chip

- _ allows for lower thresholds
- M6 is coupling capacitor, area increased by factor 7.5 for better coupling to GN node (gain stage input)
- Impedance matching M1 (output) to M2 (input)
- ENC reduced by factor 2 (by simulation)
- Gain at threshold increased by factor 3 (again sim)

TJ-MONOPIX2 FRONT-END

Increased size of M1 (and also M6) increases the gain and effectively decreases ENC which in turn

- DAQ System based on RD53A/B readout board bdaq53
- Standalone carrier PCB with power and DisplayPort connector
- Readout board with 1 Gbit/s connection to DAQ computer (10) Gbit/s possible)
- Small and portable setup for irradiations, beam tests etc.
- Chip supports addressing by chip ID (jumper on pin header)
 - Multi-chip readout should be possible with bdaq53

CSA 1 NMOS amplifier from LF-Monopix1

CSA 2 Telescopic cascaded structure

CSA 3

Current into input transistor from two separately adjustable branches

Unidirectional Self-biased differential amplifier followed by a CMOS inverter

Bidirectional

Optimized transistor dimensions and swapped input ports for faster speed

- Derived from ATLAS FE-I3 readout chip
- Rate capabilities around 100 MHz/cm²
- Token propagation along column _
- Readout controller at end of column (READ, FREEZE to pixels)
- Data propagated along column with row _ address, leading edge and trailing edge
- Periphery merges data from one TOKEN signal into frames that are transmitted 8b10b encoded to readout board

COLUMN DRAIN READOUT

	ALICE LHC	
		Οι
Time resolution [ns]	20 000	
Particle rate [kHz / mm ²]	10	10
Fluence [neq cm ⁻²]	> 1013	1
lon. Dose [MRad]	0.7	Ę

- rad-hard DMAPS

Design specification for

DMAPS potential candidate

