TCAD simulations of the ATLAS ITk-Strip sensors for the HL-LHC

Jeff Dandoy, Damir Duvnjak, Christoph Klein, Thomas Koffas, Callan Jessiman, John Keller, Ezekiel Staats on behalf of ATLAS ITk Strip Sensors community

> <u>43rd RD50 Workshop</u> 29 November 2023

ATLAS ITk Strip Detector

Performance gains of new detectors to expand HL-LHC physics program

- Silicon tracking out to 1 m radius with less detector material
- Forward tracking: $2.4 < |\eta| < 4.0$
- 10x readout rate: 1 MHz
- Robust to radiation: ITk Strip expects fluences ~50 MRad, 1.2×10¹⁵ n_{eq}/cm²

Forward High-Granularity **Timing Detector**

Silicon Strip Tracker

165 m² of silicon sensors 60 million readout channels 300,000 ASICs

- Sensor and ASIC designs approved and in production
 - Still much to understand about long-term performance, optimal operation / digitization, & simulations
- Today: Comparing TCAD simulations & lab measurements - across sensor geometries and test structures
 - with varying radiation fluences

ITk Strip Staves built at BNL

ITk Silicon Strip Sensors

- n+-in-p sensors: 304 μ m active depth, varying geometries
- Half-moons on wafer periphery with several sizes of mini strip sensors and square test diodes

ITk Silicon Strip Sensors

- n+-in-p sensors: 304 μ m active depth, varying geometries
- Half-moons on wafer periphery with several sizes of mini strip sensors and square test diodes
- O(thousand) AC-coupled n+ strips separated by p-stop implants

ITk Silicon Strip Sensors

TCAD sensor model

- 2D cross-section model for both sensor bulk & edge implemented by Callan Jessiman
 - Will show new results at upcoming 13th Hiroshima Symposium
- Parameters informed by combination of
 - ATLAS technical specs + HPK info
 - Metrology measurements
 - CV measurements & TCAD tuning

Context	Parameter	Value	Source
Substrate	thickness p-type doping	$305 \ \mu { m m}$ $3.2 imes 10^{12} \ { m cm}^{-3}$	tuning TCAD to match CV
Backplane	thickness	$15 \ \mu m$	total from metrology $-$ rest
	p-type dose	$10^{14} { m cm}^{-2}$	guess (typical value)
	doping depth (σ)	$1 \ \mu m$	
Sensor	horizontal layout		microscope, GDS
Oxide	thickness	$0.7~\mu{ m m}$	calculated from CV
	charge	10^{11} e/cm^2	
Passivation	thickness	$0.6 \ \mu m$	
	structure	half SiO_2 , half Si_3N_4	guess (typical structure)
\mathbf{Strips}	thickness	$1.25 \ \mu m$	
	coupling thickness	$0.24~\mu{ m m}$	calculated from $C_{coupling}$
	n-type dose	$2 \times 10^{15} \mathrm{~cm^{-2}}$	calculated from $R_{implant}$
	doping depth (σ)	$0.5 \ \mu m$	guess (typical value)
Bias rail	thickness doning	somo os strins	guoga (gimilar structures)
Guard ring	tillexitess, doping	same as surps	guess (similar structures)
Edge metal	thickness	same as strips	guess (similar structures)
	doping	same as backplane	guess (typical value)
	contact to Si	under outer overhang	guess (typical layout)
p-stop	width	$6.5 \ \mu { m m}$	microscope, matches spec
	p-type peak conc. doping depth (σ)	$4.5 imes 10^{15} m ~cm^{-3}$ 1 $\mu m m$	tuning TCAD to match CV

Lab IVs for various test structures

- IVs of sensors and diodes measured at Carleton with Semiprobe system
- Diodes show expected increase in current density with growing circumference-to-area (edge effects)
- Strip sensors see 2 plateaus, with second rise between 200-250 V
 - Effect also seen in test diodes, appears to grow with larger area-to-circumference → Suggests bulk effect
 - Effect negligible in **mini strip sensors** & **MD2**
 - To be understood

Building full-sensor IV simulations

• Simulate small 2D cross-sections at edge and bulk

• Tuned carrier lifetime by extrapolating bulk prediction to total sensor area

Building full-sensor IV simulations

- Simulate small 2D cross-sections at edge and bulk
 - Tuned carrier lifetime by extrapolating bulk prediction to total sensor area
- Extrapolate simulation to match total sensor area of edge or of bulk

Building full-sensor IV simulations

- Simulate small 2D cross-sections at edge and bulk
 - Tuned carrier lifetime by extrapolating bulk prediction to total sensor area
- Extrapolate simulation to match total sensor area of edge or of bulk
- Add extrapolated IVs for edge and bulk simulations into a total sensor estimate

Building per-structure IV simulations

- · Can also extrapolate to various test structures
- Diodes are not directly simulated in these results

MD8 diode

Matching IVs with TCAD traps

- To reproduce IV characteristics, simulate inherent traps from manufacturing
- A surface trap (silicon-oxide boundary) near midband found to produce a second IV rise
- Primarily in simulations of structure edge

IVs after proton irradiation

- MD8 diodes irradiated with protons to various fluences at CYRIC (Tohoku University, Japan)
 - Annealed at 60°C for 80 minutes, then measured at -20 °C by KEK

Irradiated MD8s: Absolute IV curves

- Clear increase in leakage current, nearly linear dependence on fluence $\sim 8 \cdot 10^{-12} \frac{nA}{n_{eq}/cm^2}$
- Smooth rise in current, fairly linear slope after 200 V

Parameterizing trap effects

- Models exist to parameterize radiation effects using a small number of effective traps implemented in TCAD
 - 3 models, visualize below the Donor and Acceptor traps
 - Perugia 2022 model also includes a parameterization of surface traps at Silicon/Oxide boundary

- How do these models perform for ITk Strip sensors? Implemented in TCAD to compare with MD8 diodes
- Using default physics models of carrier mobility and trap generation-recombination processes
 - Shockley–Read–Hall Recombination models lifetime of free carriers

Comparing models to MD8s

- Direct implementation of low-temp models give ballpark agreement of magnitude with irradiated+annealed MD8s
 - Great out-of-the-box shape agreement

Comparing models to MD8s

- Direct implementation of low-temp models give ballpark agreement of magnitude with irradiated+annealed MD8s
 - Great out-of-the-box shape agreement
- For cold temperatures, model with best agreement varies with fluence
- Perugia 2022 + surface charges implemented w/ naive linear dependence on fluence until saturation
 - Fails cold simulations, give early soft breakdown in warm simulations

Deep-Level Transient Spectroscopy

- DLTS scan fills traps to measure their energy levels & concentrations
 - See talks by Christoph Klein on method and results (<u>earlier today</u> & upcoming at <u>13th Hiroshima Symposium</u>)
- DLTS on irradiated (+ annealed) MD8s have identified 2 hole trap candidates in the sensor bulk from proton irradiations
 - $E_1 = 0.46 \text{ eV}$, capture XS = 1.7e-14, prod. rate = 0.07 (per n_{eq}/cm^2)
 - $E_2 = 0.53 \text{ eV}$, capture XS = 7.7e-13, prod. rate = 0.08 (per n_{eq}/cm^2)
- Low-temp simulation under different Donor or Acceptor assumptions
 - Current is ~10x larger than MD8s, with soft breakdown (earlier at high fluence)
 - Larger IV slope beyond 150 V

Outlook

- TCAD model of unirradiated ATLAS ITk Strip sensors and test structures show ballpark agreement in IVs, tuning ongoing to match all characteristics
- Several (out-of-box) models of irradiation defects checked, with good first-pass agreement
- Future work:
 - Study alternative physics models for traps
 - Scan trap energy levels & concentrations → parameterize effect on sensors & diodes
 - Directly simulate test diodes and humidity effects (a la studies by Ilona-Stefana Ninca, see <u>13th Hiroshima Symposium</u>)
 - Integrate TCAD fields into ATLAS digitization models for use in future tracking simulations at HL-LHC
- See more results by Callan Jessiman at 13th Hiroshima Symposium

Sensor details

Fig. 4.1: Schematic cross-section of a sensor along the strip direction (not to scale).

Interfacing with AllPix²

- ATLAS charge propagation models for signal digitization are accurate but slow
 - Perform simulations using AllPix² to derive templates (e.g. charge collection efficiency) for quicker digitization
 - Utilize electric field and Ramo potential maps ported from TCAD simulations
- AllPix2 charge propagation shows significant disruptions to charge transport when TCAD + AllPix² traps are used

