

SENSOR DESIGN, GUARD RING, BREAKDOWN:

BREAKDOWN PERFORMANCE OF GUARD RING DESIGNS FOR PIXEL DETECTORS IN 150 NM CMOS TECHNOLOGY

Sinuo Zhang*, Ivan Caicedo, Tomasz Hemperek, Toko Hirono, and Jochen Dingfelder

SENSOR DESIGN OF RD50-MPW4 FOR IMPROVING THE BREAKDOWN VOLTAGE

Sinuo Zhang*

PART 1

- 6 Passive-CMOS test structures fabricated in 2016: breakdown voltage ↔ guard ring structure
- Measurements: IV-characteristics, effect of junction breakdown
- <u>2D TCAD simulations</u>: IV-curves, potential and electric-field distributions
- Preprint on Arxiv: https://arxiv.org/abs/2310.15717

Breakdown Performance of Guard Ring Designs for Pixel Detectors in 150 nm CMOS Technology

Sinuo Zhang, Ivan Caicedo, Tomasz Hemperek¹, Toko Hirono², Jochen Dingfelder

Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Nußallee 12, 53115 Bonn, Germany

FEATURES OF THE TEST STRUCTURES

qρ

Compare design features

CHARACTERISATION (1)

RESULTS FOR GROUNDED N-RING SCENARIO

- Measured relations: F>C>B>D~A
- Simulation reproduced the relations between test structures
 - Except for A&D

• Beneficial design features according to the control group

The 43rd RD50 Workshop, CERN, 28.11.2023 - 01.12.2023

p-well

SIMULATION: POTENTIAL AND ELECTRIC FIELD DISTRIBUTION Maximum potential drop

- Higher E-field -> easier avalanche breakdown
 -> identify and compare the maximum E-field
- Highest potential drop between n-ring & GR1
 - -> Max. E-field at the n-ring reflects the breakdown performance
- Beneficial features smoothen the potential distribution
 - -> reduce the max. E-field
- Structure F:
 - Most beneficial features
 - Highest breakdown voltage
 - -> implemented in DMAPS prototype LF-Monopix2

FLOATING N-RING SCENARIO: EFFECT OF DEEP N-WELL

 Breakdown voltage: D > A (both simulations and measurements)

- Max. E-field in A is higher, due to the large potential difference

 > smaller breakdown voltage
- Floating deep n-well
 - -> higher potential than standard n-well
 - -> smoother potential distribution
 - -> test structures for RD50-MPW3 submission

CHARACTERISATION (2)

modifies the local potential

FLOATING N-RING SCENARIO: VOLTAGE (V_{poly}) AT THE FIELD-PLATE

- Structure E (measurements and simulations):
 - $V_{\text{poly}} = 0 \text{ V}, -50 \text{ V}, -100 \text{ V}$ at the the field-plate -> increase of breakdown voltage
 - $V_{\rm poly} = -150 \, {\rm V}$
 - -> <u>early breakdown</u>
- Potential at the floating n-ring is lowered with ramping bias, and pinned to $V_{\rm polv}$
- Important E-field peak at
 - Pixel: \nearrow with \nearrow | V_{poly} | , then <u>saturates</u>
 - N-ring: \> with \Z | V_{poly} |, <u>but \Z with \Z</u>
 |V_{bias}|
 -> "max." E-field (the candidate)
 -> reduced by | V_{poly} | leads to higher
 breakdown voltage
- Large $\mid V_{\rm poly} \mid$ causes too high E-field at the pixel implant -> early breakdown

SUMMARY AND CONCLUSION

• The relation between the breakdown performance and the guard ring design for unirradiated case was studied based on 6 passive-CMOS test structures through measurements and simulations

PART 2

BREAKDOWN PERFORMANCE OF THE MPW3

INFLUENCE FROM THE FLOATING PW

Potential

High field in all cases

p-stop

(arounded n-rina)

ground

Pixel

- Keep the PW
- old & new guard ring designs, floating & grounded n-ring
- High E-field
 - at the n-ring: for grounded n-ring
 - -> old chip ring (RD50-MPW3) limits the breakdown
 - -> new chip ring in MPW4 solves it
 - at the pixel: in all cases region under PW hard to be depleted
 - -> PW at bias potential, large potential drop
 - -> PW determines the similar BDV for all other cases (independent of chip ring design)

The 43rd RD50 Workshop, CERN, 28.11.2023 - 01.12.2023

-HV

High field when grounded

Floating guard rings

(arounded n-rina)

OldGR PW Ground

NewGR PW Ground

NewGR_PW_Float

New rings

Old rings

OldGR PW Float

Reduced by new GR

floating / g

N-ring

Floating PW

Hard to

Large potential drop

be deplete

(arounded n-rina)

(floating n-ring)

SUBSTITUTE THE PW WITH DEEP N-WELL

- Use DNW (grounded), grounded n-ring, compare old & new guard ring
- Grounded n-ring & DNW
 - -> regulate the potential between the matrix and the guard rings
 - -> full depletion, and small voltage difference
 - -> guard ring design determines the breakdown

SUMMARY AND CONCLUSION

- Simulation of the breakdown performance of MPW3 and modified structures
- The guard rings and the large floating PW outside the pixel matrix limit the breakdown performance
- Improvements:
 - New guard ring design:
 - -> smoother potential distribution close to the chip's edge
 - Grounded DNW substitute the floating PW:
 - -> regulate the potential between the pixel matrix and the guard rings
 - -> improve the depletion and reduce the high electric field
- Goal: increase breakdown voltage -> enables larger depletion width

DESIGN FEATURES AND CONTROL GROUPS

	Label	Implant	Overhang	<pre># Rings (GR1 Gap)</pre>	Inter-pixel structure	Deep n-well
	→ A	р	Yes	<u>6 (8 µm)</u>	p-stop	No
	→ B	$\mathbf{n}\mathbf{+}\mathbf{p}$	Yes	$6 (8 \mu m)$	p-stop	Yes
	\rightarrow C	n+p	Yes	$5 (32 \mu m)$	p-stop	Yes
	→ D	р	Yes	6 (8 µm)	$\mathbf{p} ext{-stop}$	Yes
	\mathbf{E}	n+p	Yes	$5~(32\mu\mathrm{m})$	field-plate	Yes
	\rightarrow F	n+p	No	$5~(32\mathrm{\mu m})$	p-stop	Yes

- 4 control groups
 - A&D: deep n-well
 - B&C: number of rings (the gap size)
 - B&D: n+p implant
 - C&F: overhang
- E: different voltages at the field-plate