

### RD50 workshop @ CERN, 29/11/2023

# A Lightweight Algorithm for Modelling Radiation Damage effects in the MC events for HL-LHC experiments

Marco Bomben & <u>Keerthi Nakkalil</u> APC & Université de Paris







# Radiation damage modelling : ATLAS approach

#### **Run2 and Run3 strategy**

- Current strategy : Evaluate final position and induced signal of group of carriers in MC
- Inputs:
  - Precise electric field simulation (TCAD) to take into account radiation damage effects
  - Weighting potential (TCAD)
  - Trapping rates (literature)





## Radiation damage modelling : ATLAS approach

#### **HL-LHC** strategy

r [mm]

- HL-LHC : ATLAS/CMS pixel detectors exposed to unprecedented levels of radiation damage
  - ◆ Peak luminosity:  $1x10^{34} \rightarrow 5 7x10^{34} \text{cm}^{-2}\text{s}^{-1}$
  - Average collisions/BC:  $\sim 30 \rightarrow \sim 200$
  - Integrated luminosity:  $350 \rightarrow 4000/\text{fb}$
- Expected increase of particles density and rates in HL-LHC -> need for a faster algorithm
  - New strategy is planed : charge reweighing from look-up tables



- Idea : For each simulated charge q at depth z find in which pixel it will end up, by how much (k) the signal will be reduced
  - Goal: Simulated pixels in MC is corrected using these information before digitisation -> correction scheme implemented using Allpix-squared





### **Allpix-squared framework**

#### **Simulation flow**

• Modular, generic simulation framework aiming at facilitating the different steps of the simulation of semiconductor detectors



• Building blocks follow individual steps of signal formation in detector

#### https://allpix-squared.docs.cern.ch/





# Allpix-squared for radiation damage digitiser

#### **Implementation strategy**

- Simulate sensors before and after irradiation, per geometry and per fluence
- Save k factor = collected charge after/before irradiation for a pixel struck at a certain Z position
- Evaluate Lorentz angle deflection as a function of Z position
- Average free path as a function of Z





#### LHCb TCAD radiation damage model



MBomben, APC, Paris

# LUTs from Allpix-Squared

### How to generate the LUTs

- Simulate **point** deposition using "scan" model ([DepositionPointCharge]) in AP2
  - Charge carrier deposition position change with every event, ensuring homogenous scanning of a single pixel cell
  - 125000 events simulated, deposit 1000 e-h pairs every 1um along x, y and 2um along z
  - Simulation for 100  $\mu$ m thick planar sensor at  $4x10^{15}$  n<sub>eq</sub>/cm<sup>2</sup> + and 600 V

#### • Creation of CCE LUT

- CCE per event = (max pixel charge)/(deposited charge)
- ◆ CCE LUT obtained by taking the most probable CCE values (MPV) at various x, y deposition position for each z position
- Creation of tan(LA) LUT
  - + Perform a poll fit to the distribution of electron drift for each z position (delx vs. delz) to extract the tanLA
- Creation of delZ LUT
  - Perform a pol4 fit to distribution of delz (propagatedzpos depz) vs z to fill delZ LUT





Electron drift

# LUTs from Allpix-Squared

LUTs



## **Closure test**

- Using AP2, we've estimated :
  - CCE (Z), average Lorentz angle deflection as a function Z, average free path  $\Delta Z(Z)$
- Closure test to validate our approach :
  - Simulate charge deposition
  - Determine final position and fraction of induced charge using our LUTs:
    - $Q(Z) = CCE(Z_deposited)*q(Z_deposited)$
    - **\*** Z\_propagated = Z\_deposited +  $\Delta Z(Z_{deposited})$
    - $x_{propagated} = x_{deposited} + tan(\theta_L)(Z_{deposited}) * \Delta Z(Z_{deposited})$
  - Continue with transfer and digitisation steps
  - Compare the results at 3rd bullet with the ones obtained using the full chain that was used to produce the lookup table
- Developed a new module in Allpix-squared : LUT propagator codes
- Performed closure tests with: point charge deposition, line charge deposition, **120 GeV Pions** using LUTs generated with the "scan" model of charge deposition
  - Pixel week Nov'23 : <u>slides</u>
  - ✦ AUW Nov'23 : <u>slides</u>



#### **Simulation of 120GeV Pions**

- Each event has a single 120GeV pion passing through the sensitive volume, simulate 1000 events
  - Normal incidence, eta = 1, eta = 1.4 (eta values of 100um barrel ITk pixels)
- # e-h pairs created by a given energy deposition calculated using : mean pair creation energy (Si = 3.64eV), fluctuations modelled: Fano factor (0.115)
- Scale the charges using CCE LUT
- Propagate the carriers using tan(LA) and  $\Delta Z$  LUTs
- Compare the results with full AP2 simulation

#### Highly collimated beam of 120GeV pions







## Normal Incidence

### **Pixel maximum charge & PropagatedXPosition**



## Normal Incidence

### **Cluster size & Cluster charge**



11

### **Eta** = $1(\theta = 0.705 rad)$

#### **Pixel maximum charge & PropagatedXPosition**



### Eta = 1 ( $\theta$ = 0.705*rad*)

### **Cluster size & Cluster charge**

#### **Full simulation**





### Eta = 1.4( $\theta$ = 0.483*rad*)

#### **Pixel maximum charge & PropagatedXPosition**

#### **Full simulation**

**Closure test** 



Eta =  $1.4(\theta = 0.483rad)$ 

### **Cluster size & Cluster charge**

#### **Full simulation**



Closure test

## **Closure test results**

#### **Relative errors on mean: putting everything together!**

| #                                | Pixel max charge | Cluster size | Cluster<br>Charge |
|----------------------------------|------------------|--------------|-------------------|
| Normal Incidence                 | 0.26%            | 1 %          | 0.1%              |
| $\eta = 1(\theta = 0.705 rad)$   | 2 %              | 4.9%         | 0.11%             |
| $\eta = 1.4(\theta = 0.483 rad)$ | 1.2%             | 5.1%         | 2.2%              |

- Closure test at normal incidence is in excellent agreement with the full simulation
- Good agreement in the mean cluster charge distributions in all the cases -> important variable for track reconstruction
- Despite using a simple method/strong approximation, achieved very good results!

# Summary

### What next??

- Silicon detectors at hadron colliders are exposed to unprecedented levels of radiation damage
- Signal loss is the most important effect for cluster position determination
- Simulation of these effects in ATLAS MC for HL-LHC -> pixel reweighting
- Allpix-Squared plus detailed TCAD simulations to make correction to take into account signal reduction and cluster shape changes
- Produced CCE vs Z,  $tan(\theta_L)$  vs Z and,  $\Delta Z$  vs Z LUTs from Allpix-squared using "scan" model V
- Validated the approach using closure tests: point charge depositions, line charge deposition, 120GeV Pions using [LUTPropagator] Planning to merge in the official AP2 repository
- Similar efforts in progress for 3D and strip detectors
- Next steps :
- + Tests with Pions incident at different beam energies
- + Anticipating the 2024 TB campaign for ITkPixV2 modules to validate our approach with the TB data

Thank you so much for your attention !! :)