Effect of annealing on charge collection in n-on p type silicon strip detectors irradiated with 24 GeV protons

Igor Mandić, Vladimir Cindro, Andrej Gorišek, Bojan Hiti, Gregor Krambeger, Marko Mikuž, Jernej Debevc, Marko Zavrtanik,
Jožef Stefan Institute, Ljubljana Slovenia,

and

ATLAS ITk Strip Sensor community
Introduction

- extensive measurements of charge collection and annealing up to $\Phi_{eq} \sim 2 \times 10^{15} \text{n}_{eq}/\text{cm}^2$ during development of strip sensors for the ATLAS ITk

- at 500 V (ATLAS ITk Strips max. operating bias) annealing of collected charge in detectors irradiated with reactor neutrons or low energy protons behaves as expected:
 - beneficial effect of short term annealing followed by loss of CCE because of “reverse” annealing

R. Orr et al., PoS(Pixel2022)043

L. Wiik-Fuchs et al., NIMA 924 (2019) 128-132

November 2023, 43rd RD50 Workshop, CERN, Geneva, Switzerland
Introduction

- recently unusual annealing behavior was measured after irradiation with 24 GeV protons at CERN IRRAD facilities:
 - drop of collected charge after short term annealing followed by the increase after longer annealing times
 - no or very small effect of long annealing
- motivation for further investigation, preliminary results reported in this presentation

Irradiated with 24 GeV protons in IRRAD shuttle (at normal angle vs. beam)
Samples

- miniature strip detectors from production wafers for ATLAS ITk strip detector
- producer: HPK
- n+ strips in p-type bulk, FZ
- AC coupled
- strip pitch 75.5 µm
- active thickness 300 µm, (physical thickness 320 um)
- $V_{fd} \sim 300$ V

Layout of Atlas ITk strip wafer from Y. Unno et al., 2023 JINST 18 T03008
https://doi.org/10.1088/1748-0221/18/03/T03008
Velocity profiles:

\[I(y, t \sim 0) \approx qE_w \left[\bar{v}_e(y) + \bar{v}_h(y) \right] \Rightarrow \bar{v}_e(y) + \bar{v}_h(y) \propto E \]

- induced current at \(t \sim 0 \) proportional to carrier velocity at laser location
- if \(E \) not too large, \(I \) proportional to \(E \)
 \((E_w \sim \text{constant}) \) (see: G. Kramberger, et al., IEEE Trans. Nucl. Sci. NS-57 (2010) 2294.)

Charge:

\[Q = \int_0^{25\,\text{ns}} I(t) \, dt \]
Experimental methods

- CCE with Sr-90
- Alibava system based on analogue Beetle chip ➢ alibavasystems.com
- 25 ns peaking time
- 40 MHz clock
- DUT cooled by Peltier cooling
- triggering with scintillator
- normalization to MIP MPV – 23100 e-h pairs in 300 μm of depleted unirradiated silicon (77 e-h pairs/μm)

Scheme of the setup:
Results

- mini detectors irradiated with 24 GeV protons
- collected charge measured with Alibava setup
- Fluences 5×10^{14} and 1×10^{15}: (irradiated in the cold box at 12 deg. vs beam) ➔ usual annealing behavior
- Fluences 1.7×10^{15} and 2.1×10^{15}: (irradiated in the shuttle at normal angle) ➔ drop of charge after short annealing times
E-TCT

- 24 GeV protons, Fluence: $5 \times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2$
- usual annealing behavior:
 - N_{eff} (effective acceptors) decreases during short term annealing:
 - depleted depth increases at bias below V_{fd}
 - V_{fd} decreases

E-TCT velocity profiles:

November 2023, 43rd RD50 Workshop, CERN, Geneva, Switzerland
E-TCT

High fluence: 2.1e15 \(n_{eq}/cm^2 \)

- double peak velocity profile
- carrier velocity (Electric field) near strips reduced by short annealing
 ➔ not beneficial for charge collection when trapping times short ➔ CCE drops

Lower carrier velocity on strip side after annealing

\[\Phi = 2.1 \times 10^{15} n_{eq}/cm^2 \]

Bias = 500 V

Annealed 80 min. at 60°C

500 V

80 min

Strip side

Back plane

80 minutes annealing point

November 2023, 43rd RD50 Workshop, CERN, Geneva, Switzerland
E-TCT

- High fluence $\Phi_{eq} = 2.1 \times 10^{15} \text{n}_{eq}/\text{cm}^2$
- drop of negative N_{eff} by short term annealing \rightarrow smaller carrier velocity in the first peak \rightarrow drop of CCE
- increase of negative N_{eff} by longer (reverse) annealing \rightarrow carrier velocity in the first peak increases \rightarrow rise of CCE
E-TCT, Charge collection profiles

- Charge: integral of current pulse from 0 – 25 ns
- Lower charge collection on strip side after up to 160 minutes annealing
 ➔ Note: increase of charge at back side after annealing seen in E-TCT has smaller effect on CCE with Sr-90 because of different weighting field

![Graphs showing charge collection profiles over time and annealing.]
Double peak electric field profile in Si detectors after irradiation is a long known phenomenon:

4. G. Kramberger et al. 2014 JINST 9 P10016
5. several more publications...

Origin of double peak as explained in [2]:
- thermally generated equilibrium carriers trapped on the radiation induced localized energy levels polarize space charge

From [4]:
Approximation of electric field:

- Current:
- Free carrier concentration:
- Space charge:
- Electric field:

500 V
2e15 n_{eq}/cm^2 neutrons
• shape of velocity profile depends on irradiation particle type at high fluences
• neutron irradiation: front peak dominant, back peak much smaller than in case of 24 GeV protons at same Φ_{eq}
• PSI pions (190 MeV), 24 GeV protons: symmetric
 ➔ annealing can have different effects on CCE measured with Sr-90 for different shapes of velocity profiles
E-TCT neutrons

- effects of annealing on E-TCT profiles was measured for neutron irradiated strip detectors to ~ 1×10^{15} n$_{eq}$/cm2 in G. Kramberger et al. 2014 JINST 9 P10016
- y_{act} increases with short annealing \rightarrow concentration of negative space charge (effective acceptors) decreases
- y_{back} doesn’t change much with short annealing

\Rightarrow neutrons: front peak dominant, decrease of acceptor concentration N_a increases the width of the front peak
\Rightarrow CCE increases

G. Kramberger et al. 2014 JINST 9 P10016
E-TCT, 24 GeV protons

- symmetric velocity profile
- decrease of effective acceptor concentration by short term annealing reduces the electric field in the first peak and consequently increases the field in the second peak (if N_{eff} at the back unchanged) \Rightarrow CCE decreases
- it can be expected that CCE vs. annealing time would behave similar as the ratio $v_{\text{front}}/v_{\text{back}}$
Charge Collection

- double peak electric field not optimal for CCE at high fluences \rightarrow voltage drop at back side contributes less than the front side.
- at 500 V and at $\Phi_{eq} > 1 \times 10^{15}$ n$_{eq}$/cm2 collected charge after irradiation with 24 GeV protons lower than after irradiation with low energy protons \rightarrow double peak electric field may be the reason.
- ATLAS ITk Strip sensor community started extensive measurement campaign to study the effect of irradiation with 24 GeV proton, even if at higher proton fluences than expected in the ITk strips after 4000 fb$^{-1}$ at HL-LHC.

K. Hara et al., NIM A 983 (2020) 164422

this work, 24 GeV protons, points added to the plot by Hara et al.
\Rightarrow Note: Preliminary!
Fluences values uncertain!
• dependence of charge collection in irradiated silicon strip detectors on annealing time at 60°C was studied

• it was observed that for samples irradiated to fluences above 1.e15 n_{eq}/cm^2 with 24 GeV protons dependence on annealing time is different than for samples irradiated to lower fluences:
 ➔ at low fluences initial increase of collected charge is followed by decrease at longer annealing times
 ➔ at high fluences collected charge decreases during short term annealing

• E-TCT measurements indicate that the effect could be attributed to the double-peak electric field profile observed in Si detectors irradiated with 24 GeV protons to high fluences

• double-peak electric field may be the reason for lower charge collected measured after 24 GeV protons compared to low energy protons at fluence higher than 1e15 n_{eq}/cm^2

• ATLAS ITk strips community started extensive study of the effects of 24 GeV protons on tests structures from production wafers

• first preliminary results are shown here, we are looking forward to new results in next months
Backup slides
- 24 GeV protons, Fluence: \(5 \times 10^{14} \text{n}_{\text{eq}}/\text{cm}^2\)

- Charge collection (integral of current pulse 0 – 25 ns) profiles

\[V_{fd} > 300 \text{ V} \]

Fully depleted at 300 V
• 2e15, velocity scans at different voltages and annealing times

November 2023, 43rd RD50 Workshop, CERN, Geneva, Switzerland
- charge profiles at different voltages and annealing times
• 5e14
• charge profiles at different voltages before and after 80 min. annealing

Sr-90

80 min. points

November 2023, 43rd RD50 Workshop, CERN, Geneva, Switzerland

Charged particles higher than neutrons

Neutrons higher than charged particles

Fig. 6. Collected charge at 500V bias as a function of fluence for n-in-p FZ sensors irradiated with 26MeV protons, 24GeV protons and reactor neutrons up to $1.6 \times 10^{16} n_{eq} \text{ cm}^{-2}$.