2D pixelated BNL AC-LGADs: From laser TCT to Test Beam characterization

Matias Senger
Ben Kilminster
Anna Macchiolo

Universität Zürich ${ }^{\text {VZ }}$

Last (43 ${ }^{\text {rd }}$) RD50 Workshop, Nov 2023, CERN

Gaetano Barone

Gabriele Giacomini Alessandro Tricoli

AIDAinnova WP6 test-beam group

- CNM-Barcelona (AIDAinnova): Oscar David Ferrer Naval
- IFCA (AIDAinnova + ETL): Ivan Vila Alvarez, Andres Molina Ribagorda, Jordi Duarte Campderros, Efren Navarrete Ramos, Marcos Fernandez Garcia, Ruben Lopez Ruiz
- IJS (AIDAinnova): Gregor Kramberger, Jernej Debevc
- University of Torino / INFN (AIDAinnova + ETL + EXFLU): Roberta Arcidiacono, Federico Siviero, Leonardo Lanteri, Luca Menzio, Roberto Mulargia, Valentina Sola, Marco Ferrero
- INFN Genova: Claudia Gemme
- UZH (AIDAinnova): Anna Macchiolo, Matias Senger
- Korea: D. Lee, W. Jun, T. Kim
- CERN: A. Rummler, V. Gkougkousis

Introduction

- AC-LGAD*: A single, large LGAD with a resistive and a dielectric layer on top, and small electrodes touching it.
- Fill factor $=100$ \% by construction.

- Efficiency?
- Radiation hardness?
- Time resolution inherited from LGAD. V
- Spatial resolution improved by sharing the charge.

Characterized devices

- 2 identical devices
- Manufactured at BNL
- Active thickness: $30 \mu \mathrm{~m}$
- Pad size: $200 \mu \mathrm{~m}$
- Pitch: $500 \mu \mathrm{~m}$
- 2×2 pads readout
- Unused pads to GND
- Non irradiated

Charge sharing at the heart of this technology

Laser TCT studies

Goals of TCT characterization

- Understand working principles of this technology.
- Compare algorithms for:
- Hit position reconstruction.
- Hit time reconstruction.

UZH laser TCT setup

- Particulars Scanning TCT:
- Infrared laser (1064 nm).
- Laser spot Gaussian with $\sigma \sim 9 \mu \mathrm{~m}$.
- $\quad \sim 1 \mu \mathrm{~m}$ spatial resolution.
- Laser intensity set to match ≈ 1 MIP.
- Laser splitting+delay ${ }^{1}$ with optic fiber for timing measurements provides two pulses separated by 100 ns .
- Oscilloscope LeCroy 640Zi.
- $3 \mathrm{GHz}, 20 \mathrm{GS} / \mathrm{s}$.
- Chubut 2 readout board ${ }^{2}, 4$ channels with 2 amplification stages.

Waveforms analysis

We record the waveforms, then process them offline*. Example:

Hit position reconstruction

TCT scans

Two scans per DUT, training and testing scans, as shown:

Testing scan: 22 events per position

Position reconstruction, step 1

Compute some meaningful quantity with strong spatial dependency, and preferably independent of total charge deposited. We chose the "amplitude shared fraction" (ASF):
$\mathrm{ASF}_{i}=\frac{A_{i}}{\sum_{j} A_{j}}$

Position reconstruction, step 2

Feed the data into a machine learning algorithm. We compare:

1. Deep neural network (DNN):

- Popular, can solve anything.
- PyTorch library: quick and easy.

2. Lookup table (LookupTable):

- Sometimes, the simpler the better.

3. Maximum Likelihood Estimator (MLE):

- Measure the likelihood function at each position, then simply compute the most likely x, y.

Position reconstruction, step 2.5

For the training process, the position data was discretized into a grid as shown.
Why?

- Required for lookup table algorithm, no way around it.
- Gives a parameter to sweep and compare the algorithms.
- As the grid gets smaller, better results are expected.

... etc...

... etc...

Results

The results are measured using the reconstruction error:

$$
\text { Reconstruction error }=\sqrt{\sum_{\xi \in\{x, y\}}\left(\xi_{\text {reconstructed }}-\xi_{\mathrm{TCT}}\right)^{2}}
$$

Results

The results are measured using the reconstruction error:

$$
\text { Reconstruction error }=\sqrt{\sum_{\xi \in\{x, y\}}\left(\xi_{\text {reconstructed }}-\xi_{\mathrm{TCT}}\right)^{2}}
$$

Before we do any comparison, for a square binary readout pixel:
Reconstruction error $_{\text {square binary readout pixel }} \approx \operatorname{pitch} \sqrt{\frac{2}{12}} \checkmark(204 \mu \mathrm{~m})$
Reconstruction error $_{\text {square binary readout pixel }}=\frac{\text { pitch }}{\sqrt{12}} \mathbf{X}(145 \mu \mathrm{~m})$

Median reconstruction error vs training grid size

Training grid size (m)

- DNN outperforms the others for large grids (because it learns to interpolate, even though it was not trained for that)
- For fine enough training grid, all algorithms behave similar.
- Converges to $\approx 20 \mu \mathrm{~m}$ for smaller and smaller grid sizes.
- Median reconstruction error is ~10 times smaller than for a $500 \times 500 \mu \mathrm{~m}^{2}$ binary readout pixel.

Hit time reconstruction

Time reconstruction algorithms

Two methods tested:

1. Single pad approach.

- For each event just take the time from the leading waveform, ignore other channels.

2. Multiple pad weighted combination:

- Amplitude weighted average from several pads.
- No "hit position corrections".

$$
t_{\mathrm{reco}}=\frac{\sum_{i} a_{i}^{2} t_{i}}{\sum_{i} a_{i}^{2}}
$$

Time reconstruction algorithms

Single pad algorithm

Weighted average algorithm

- TDCs from all pads have to be active all the time to get the desired time resolution, one TDC out of 4 is not enough.
- ! Laser TCT lacks of Landau fluctuations

Test beam characterization

Goals of test beam characterization

- Test the technology with "real particles" (as opposed to laser pulses).
- Measure the efficiency.
- Study behavior of hits inside the pad area (impossible with laser).
- Compare results with laser TCT characterization.

Test beam setup

Simplified diagram:

Mimosa telescope

- CERN H6 beamline (120 GeV pions)
- Mimosa telescope
- Chubut 2, 4 channels readout board ${ }^{1}$
- CAEN DT5742
digitizer, 500 MHz @ 5 GS/s
- Cold box for irradiated DUTs, down to $-12{ }^{\circ} \mathrm{C}$
- Tracks reconstruction using Corryvreckan²
${ }^{1}$ https://github.com/SengerM/Chubut_2

Test beam setup

Some photos:

Waveforms distribution and events selection

Waveforms distribution and events selection

The downside of charge sharing

Threshold not trivial anymore, as opposed to a "normal LGAD" such as e.g. a TI-LGAD:

Charge sharing

Charge sharing in action

$$
x(m)
$$

Charge sharing in action

Within ROI: Majority of events have large cluster size (desirable in this technology)

Position resolution

Position reconstruction methods

Two methods were compared:

1. Charge imbalance formula. \longrightarrow
2. DNN .

$$
\left\{\begin{aligned}
x_{\text {reconstructed }}= & \frac{\operatorname{pitch}_{x}}{2} Q_{\text {imbalance } x} \\
y_{\text {reconstructed }}= & \frac{\operatorname{pitch}_{y}}{2} Q_{\text {imbalance } y}
\end{aligned}\right.
$$

a. Using ASF, same as TCT.
b. Training only on <2000 events.
$\left\{\begin{array}{l}Q_{\text {imbalance } x}=\frac{Q_{11}+Q_{01}-Q_{00}-Q_{10}}{\sum Q_{i j}} \\ Q_{\text {imbalance } y}=\frac{Q_{00}+Q_{01}-Q_{11}-Q_{10}}{\sum Q_{i j}}\end{array}\right.$

$$
\mathrm{ASF}_{i}=\frac{A_{i}}{\sum_{j} A_{j}}
$$

Position reconstruction error results

DNN reconstruction error distribution

* SBRP = square binary readout pixel, see backup slides.
** Residuals in x and y also available in backup slides.

Median
99 \%

DNN $\quad 44 \mu \mathrm{~m} \quad 150 \mu \mathrm{~m}$
Charge imbalance formula
$50 \mu \mathrm{~m} \quad 173 \mu \mathrm{~m}$ quick comparison \downarrow
$500 \times 500 \mu \mathrm{~m}^{2}$ SBRP* $^{*} \quad 204 \mu \mathrm{~m} \quad 330 \mu \mathrm{~m}$

Efficiency

Efficiency

- Measured efficiency: 100%

$$
\text { Efficiency }=\frac{\text { Number of detected particles }}{\text { Number of particles that went through }}
$$

- 0 events undetected inside ROI (out of 1150 events)

On the radiation hardness

How much gain loss can we afford?

Let's look at this plot, amplitude vs distance to pad center (this is test beam data, each point is one waveform):

How much gain loss can we afford?

We can recognize these 3 different regimes:

How much gain loss can we afford?

As long as the amplitude at the epicenter of the pads is higher than the noise, we can expect 100% efficiency in all the surface, i.e. 100% fill factor.

What happens after that?

After gain loss goes beyond the "critical gain loss", a blind spot will appear in the center and grow in size as gain further reduced, thus degrading the fill factor.

Future plans

Looking forward, near future

- New geometries
- Square and triangular pad arrays
- Varying pitch between 200 and $500 \mu \mathrm{~m}$
- Irradiate samples

- $1.0 \mathrm{e} 15 \mathrm{n}_{\mathrm{eq}} \mathrm{cm}^{-2}$
- $1.5 \mathrm{e} 15 \mathrm{n}_{\mathrm{eq}} \mathrm{cm}^{-2}$
- $2.0 \mathrm{e} 15 \mathrm{n}_{\mathrm{eq}} \mathrm{cm}^{-2}$
- 16 channels readout board (next slide)

Chubut 2 16CH

- 16 independent channels
- 2 stages amplification (no need for external amps)
- Inexpensive and simple carrier board without any assembly required (other than mounting the DUT)
- Main board reusable many times
- Digital T + humidity sensor possible to mount in carrier board
- Developed at UZH

Conclusions

- Non irradiated AC-LGAD sensors from BNL studied with laser TCT and test beam setups.
- Good performance observed:
- Efficiency at test beam: 100%.
- Median reconstruction error $\times 4.5$ better than square binary readout pixel with same pitch obtained at test beam.
- Time resolution comparable with regular LGAD measured at TCT setup.
- More results to come soon:
- Irradiation studies.
- More geometries with smaller pitch.
- 16 readout channels study.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004761.

Backup slides

Algorithms detailed comparison (TCT data)

Plots show reconstruction error distribution (ECDF plots, the integral of histograms without bins).

- As the training grid gets finer, the results get better (as expected).
- Because of the discrete training grid, reconstruction error resembles that from a BRP of the same size.
- The DNN learns to interpolate, that's why it is better for e.g. training grid 3×3 (red).
- All cases are better than a $500 \mu \mathrm{~m}$ SBRP.
- For small enough training grid ($\mathrm{N} \times \mathrm{N}=18$ in the plots), all algorithms behave roughly as a $70 \mu \mathrm{~m}$ SBRP.

Position reconstruction using charge imbalance

$\left\{\begin{array}{l}x_{\text {reconstructed }}=\frac{\text { pitch }_{x}}{2} Q_{\text {imbalance } x} \\ y_{\text {reconstructed }}=\frac{\text { pitch }_{y}}{2} Q_{\text {imbalance } y}\end{array}\right.$

$$
\left\{\begin{array}{l}
Q_{\text {imbalance } x}=\frac{Q_{11}+Q_{01}-Q_{00}-Q_{10}}{\sum Q_{i j}} \\
Q_{\text {imbalance } y}=\frac{Q_{00}+Q_{01}-Q_{11}-Q_{10}}{\sum Q_{i j}}
\end{array}\right.
$$

- Pros
- Easy
- Cons
- Only applicable to very symmetric geometries (like this one)
- No special reason why this simple formula should be right one

Charge (amplitude) imbalance

$$
\left\{\begin{array}{l}
Q_{\text {imbalance } x}=\frac{Q_{11}+Q_{01}-Q_{00}-Q_{10}}{\sum Q_{i j}} \\
Q_{\text {imbalance } y}=\frac{Q_{00}+Q_{01}-Q_{11}-Q_{10}}{\sum Q_{i j}}
\end{array}\right.
$$

Charge imbalance reconstruction results (test beam)

reconstruction error $=\sqrt{\sum_{\text {coord } \in\{x, y\}}\left(\text { reconstructed }_{\text {coord }}-\text { telescope }_{\text {coord }}\right)^{2}}$

- Median: $50 \mu \mathrm{~m}$
- 99% : $173 \mu \mathrm{~m}$

For a $500 \times 500 \mu \mathrm{~m}^{2}$ BRP*:

- Median $\approx 200 \mu \mathrm{~m}$
- $99 \% ~ \approx 330 \mu \mathrm{~m}$

[^0]

Charge imbalance reconstruction residuals (test beam)

DNN reconstruction residuals (test beam)

Reconstruction error vs position

- TCT data
- DNN reconstruction
- Color is quantile 0.99, i.e. at each position, 99% of hits got lower reconstruction error than shown

On the statistics used to measure the spatial resolution

Spatial resolution statistics table

Quantity	Formula in SBRP＊	Meaning	Comment
Median reconstruction error	\approx pitch $\times \sqrt{ }(2 / 12)$	三 50% of reconstructed hits will be closer than this to the actual hit	It is the radius of a circle in the xy plane around the reconstructed position
std of residuals in x, y ，i．e．std of 	\equiv pitch／$\sqrt{ } 12$	－Depends on the distribution －In a square SBRP＊：≈ 58 \％ of reconstructed hits will have x, y coordinates within \pm this quantity （yes，58，not 68）	－Not easy to interpret in a 2D arbitrary case（see slide with pathological example） －Beautiful interpretation for Gaussian distributions，but not for arbitrary distributions
99% of reconstruction error	三 pitch＊0．66	ミ99 \％of reconstructed hits will be closer than this to the actual hit	Useful to account for plausible tails and measure ＂the worse case scenario＂

Median reconstruction error interpretation

Simulated hits and reconstruction Square binary readout pixel of size 1

- $\quad \checkmark$ The meaning of the statistics shown in the plot is independent of distribution (i.e. valid for binary readout pixels, AC-LGADs, whatever)
- ! pitch/ $\sqrt{12} \equiv$ std ONLY for binary readout pixels
- \quad Interpretation of std is different for different distributions (for sure it is different for AC-LGADs and binary readout pixels)
- In my opinion, the most meaningful statistics when comparing binary readout pixels and non-binary readout pixels (e.g. AC-LGAD) are the quantiles of the reconstruction error, since the meaning is the same in both cases

Residuals in a square binary readout pixel (BRP)

pitch
 $\frac{\text { pitch }}{\sqrt{12}} \equiv \operatorname{std}$ of square BRP $\approx 58 \%$ of hits

Residuals distribution \times coordinate
Square binary readout pixel of size 1

\leftarrow The "magical formula" is the standard deviation of a uniform distribution (by definition), which is NOT the 68% centered interval!!! (see plots) (It is so for a Gaussian, but this is not even close to a Gaussian)

Residuals distribution y coordinate
Square binary readout pixel of size 1

Reconstruction error in a square binary readout pixel

$$
\text { Reconstruction error } \stackrel{\text { def }}{=} \sqrt{\sum_{\text {coord } \in\{x, y\}}\left(\text { coord }_{\text {reconstructed }}-\operatorname{coord}_{\text {original }}\right)^{2}}
$$

Simulated hits and reconstruction Square binary readout pixel of size 1

- original
- reconstructed

Reconstruction error distribution Square binary readout pixel of size 1

Pathological example

Consider this weird, still plausible pixel. Looking at the residuals in x, y we may be led to believe that $\approx 50 \%$ of events are closer than 0.361 to the center. However, the minimum reconstruction error is actually 0.36 . The reconstruction error quantiles, instead, never fail.

Simulated hits and reconstruction

Residuals distribution y coordinate

[^0]: * See backup slides.
 ** Residuals in x and y also available in backup slides.

