INVESTIGATING ANOMALOUSLY STRONG CURRENT IN IP REGION OF DOBLE TRENCHED TI-LGADS & DISCOVERING DIFFERENT IP SIGNALS

Gordana Lastovicka-Medin1, Vanja Backovic1, Dejan Karadzic1 Gregor Kramberger2, Jiri Kroll3, Jakob Andreasson4, Mateusz Rebarz4

1University of Montenegro in Podgorica, 2Institute Jozef Stefan in Ljubljana
3Institute of Physics at the Czech Academy of Science, 4ELI Beamlines in Prague
OUTLINE

- Introduction (Motivation)
 - Study on Ti-LGAD Type 10
- Study on UFSD4
- Study on Single Trench LGAD
- Study on Double Trenched Ti-LGAD
- Summary
Experimental Technique:

fs-laser based TCT at ELI

<table>
<thead>
<tr>
<th>Place</th>
<th>ELI Beamlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational modes</td>
<td>Single and two photon absorption (SPA and TPA)</td>
</tr>
</tbody>
</table>
| **Pulse energy on sample** | Variable by ND filters (accuracy: 0.2 pJ)
800 nm (SPA), 1550 nm (TPA) |
| Wavelength | 1550 nm, ~ 150 fs
800 nm, ~ 50 fs |
| Pulse width in sensor | 0.85 μm (SPA), 1.5 μm (TPA) |
| Rayleigh length | 3.31 μm (SPA), 7.74 μm (TPA) |
| Sample cooling | Down to -25 deg. C |
| Sample movement | X, Y, Z |
| **Bias voltage** | up to or > 720 V |
| Detection | 6 GHz (20 GSa) oscilloscope and leakage current measurement (accuracy: 0.1 μA) |

In study presented here we did not use amplifier.
Motivation:

Ti-LGAD Type 10

2 p-stops + bias ring in IP region
Spikes observed in space charge profile in no-gain region; more enhanced with increased laser power.

They appear on the sides of the central hollow (more or less at +/- 15 μm).
Same data as above but normalized for better comparison.

at low laser power

IP distance decreases with increasing bias.
at medium laser power
At high laser power (5 pJ) extremely strong side bands appear around the central hollow.
When we look at the waveforms it is visible that the very strong side bands seems to be correlated to the fact that the waveforms at the corresponding positions (orange one) are extremely broadened.

Waveforms recorded at high power and bias (5 pJ/180 V) at selected positions.
UfSD4, IPD = 61μm

No enhancement has been seen in IP region.

Submitted to Radiation protection and Isotopes (RAP 2023 conf)
No enhancement has been seen in IP region.
Double Trenched LGAD: Main topic

- W7: C2-V3-2TR-GRT2
- W11: C1-V2-2TR
- W16: C1-V4-2TR and C2-V2-2TR

\(V_{GL} = 25 \, \text{V}, \quad V_{FD} = 30 \text{ - } 35 \, \text{V}, \quad G = 5 \text{ - } 10 \)

W7, lower gain, higher leakage current
W11: shallower trench
W16: deepest trench
Strong current in IP region was measured.

Extremely prolonged TCT waveform/averaged over 64 shots.

The most probable different IP signals are superimposed.
TCT Waveforms

Sample from W7, T=20°C

“Expected” (normal) IP

Pad

“Strong” IP

Interpad-normal signal

Interpad-strong signal
W7, T=-20°C
W11, $T=\text{-20}^\circ\text{C}$
Threshold conditions for strong IP signals

Broad strong signal induced by laser illumination appears when some threshold conditions (laser power/bias) are achieved as illustrated in Figure.

For example, at high bias (140 V) even very weak 0.01 pJ laser pulse induces strong signal. To achieve this regime at 60V pulses with energy about 0.5 pJ are needed.

The "threshold plots: The Minimal laser pulse energy vs bias for strong signal in IP region for W16 sample obtained at -20°C temperature.
Ghosts

Without laser induced charge in Ti-LGAD
Two types of ghost waveforms are observed:
- Waveforms A appear at threshold 67 V and waveforms B at 130 V.
- Amplitude of both types increases with bias in the entire range.
- Width of waveforms A is about 11 ns and slightly decreases with bias from 100 to 180 V.
- Waveforms B are stronger and narrower (width about 5 ns).
- Rising of waveforms A becomes faster with bias.
- Occurrence rate of waveforms A decreases with bias; occurrence of waveforms B was not stable and varies between 1 and 3 kHz.
Ratio of “normal” to “strong” signal represented as contribution of “strong” signal in percent

- 10,000 shots were recorded at every power/bias combination (center of IP region illuminated by laser).

- At low power (0.2 pJ) “strong” signal appears above certain threshold (about 70 V) and its contribution first increases vs bias to about 15% and stays more or less constant for bias > 100 V.

- At high power (5 pJ) we observe only “strong” signal (100% contribution). Above 100 V this contribution start slowly decreasing (suppression of “strong” signal).

- Aside of general slow decreasing trend we also see some rapid drops for some bias values (for example 100, 140 and 170 V). Interestingly this effect is relatively reproducible. The measurements were repeated twice and this drop of “strong” signal contribution was always observed at the same bias (+/- 5 V).

- Data at low temperature were measured only once so we don’t know how reproducible they are. Nevertheless they show generally similar trends to those at room temperature, and follow trend of ghosts.
Little spike at the 10th s

To check small peak we observed for higher power we compared "strong" IP signal with pad signal at the same condition. We can see the same artifact in pad signal so this effect is not related to IP region.

We checked also the same signal for two different cables: 100 cm length vs 50 cm and this small peak is still in exactly the same place.
Increase in space charge suppressing the ghost

W16: C1-V4-2TR

- By increasing the bias voltage, the amplitude of the transient current signal increased in all cases, nevertheless whether LGAD was illuminated by fs-laser or laser was not used.
- Signal amplitude decreased with increasing the laser power (more charge is generated more gain was suppressed).

- Noticeably, in all studied cases, the measured IP signal was lower when LGAD IP region was illuminated by laser.
The strong signal disappeared.
Ghosts vanished.
The 2 Tr Ti-LGAD samples, produced from different wafers W7, W11 and W16, are studied.

We found that the examined 2Tr sample showed different induced current signals in the IP region compared to previously studied sensors with different isolation structures.

We identified two types of laser pulse induced signals in the IP region: “normal” signal, and “strong” signal represented by significantly broader waveforms with several times higher amplitude.

In addition, randomly occurring “ghost” signal appearing in biased but not laser-illuminated sensors were identified.

All three types of signals were explored in terms of the influence of bias voltage and laser power at different temperatures.

Experimental data indicates the presence of bias threshold for enhanced signal.
Comparison of “ghost” waveforms with laser-induced “strong” signal shows the laser quenching effect. Laser induced signal was lower in amplitude than ghost signal and it decreased with increasing laser power.

Temperature influence on the “ghost” signal is small, with a moderate amplitude increase after cooling.

However, the thermal effects become pronounced in the laser-induced signal, especially at high laser power. In addition, the shape of the laser-induced signal also changes in this case. For instance, the waveforms recorded at 5 pJ exhibit sharp features resembling the contribution of the “normal” fast IP signal.

The disappearance of both sensor self-induced and strong IP signals (laser linked) signals, after irradiation, indicates that strong IP (laser linked) signal is built from normal (relatively fast) IP signal (laser linked) and high-rate sensor self-induced signals (extremely broaden in time and extremely enlarged in amplitude due to second hole multiplication) whose multiplication goes much faster than multiplication of by laser solely induced signal.