Impact of environmental stresses on Low Gain Avalanche Diodes

Gaetano Barone^b, <u>Diallo Boye^a</u>, W Chen^a, Gabriele D'Amen^a, Spencer Ellis^b, Hijas Farook^{*a,c*}, Gabriele Giacomini^{*a*}, Spandan Mondal^{*b*}, Jennifer Roloff^{*a,b*}, Enrico Rossi^{*a*}, Trevor Russell^{*b*}, Alessandro Tricoli^{*a*}

> ^aBrookhaven National Laboratory ^bBrown University ^cUniversity of New Mexico

> > December 1, 2023

Diallo Boye: Brookhaven National Laboratory

Introduction: Low Gain Avalanche Detectors

LGAD caracteristics and its applications

- Good candidate for timing measurements.
- Variety of applications, such as HEP, Nuclear Physics, medical imaging etc.
- Application to space-based experiments starting to be investigated.

- Standard Silicon Diode
- Gain = 1
- Signal/Noise Ratio is low

- Standard Silicon Diode
- Gain $\sim 10-100$
- Signal/Noise Ratio very high
- Timing resolution $\sim 30 \text{ps}$

Environmental conditions

- A large set of studies actively performed on LGADs & AC-LGADs
 - In cryogenic and laboratory-controlled conditions.
- Space applications require the study of LGAD behavior in a wide range of environmental conditions.
 - Temperature variations -100°C and +100°C
 - Payload limitations: temperature control not ensured
- Charge carrier mobility:
 - Decreases as temperature increases due to phonon scattering.
 - The mobilities decrease as the doping concentration increases due to the scattering from the dopants.
 - ➡ Gain reduction as a function of temperature increase [1]
- Need to ensure good sensor response and electrical characteristics at varying operating conditions.

Silicon crystal $(\underline{n},\underline{Si})$ charge carrier's mobility temperature dependence after electron pico-second beam irradiation (3.5 MeV).

[1] Gain suppression mechanism observed in Low Gain Avalanche Detectors, Esteban Currás, Marcos Fernández, Michael Moll arXiv:2107.10022

Sensors and Setups

DC-LGAD made at Brookhaven National Laboratory

- 50 μ m thickness sensor is mounted to a readout chip.
- Sensor is biased with high voltage.
- Leakage currents from pad and guard ring of the sensor are measured.
- With and without a passivation layer.

Sensors and Setups

- Different setups are used in our study.
 - BNL setup.
 - RD50 setup.

	BNL setup	RD50 setups	
Probe-station setups used in reverse bias	climate chamber with two-needle probe-station readout (compliance at 10–6 A/V).	characterization laboratory, with a two-needle probe station setup (compliance at $10-6$ A/V).	
Thermal and humidity control	$\begin{array}{l} \mbox{ambient chamber } T=-60^\circ C \mbox{ to } T=+180 \ ^\circ C \\ \mbox{with varying humidity.} \\ \mbox{The setup is kept inside an ambient chamber for thermal cycle} \end{array}$	ethanol chiller for cooling and heating in the ranges of $T = -30^{\circ}$ C to $T = +30^{\circ}$ C dry air for humidity control 20-30%	
	N2 is supplied to vary relative humidity and to prevent condensation when operating at cryogenic temperatures		

Humidity and temperature are measured inside the metal box (BNL)

Humidity-controlled environments with dry-air desiccators(CERN) 5 / 26

Thermal cycle

- $\bullet\,$ Temperature of the ambient chamber is cycled at an average rate of 1.81 °C/mn.
- Humidity is maintained in such manner that dew point is always 10 0C less than the operating temperature of the ambient chamber.

Program	Temperature	Bias Voltage	IV Measurements
Day	-60 °C to 120°C	-50 V	Steps of 20°C: Ramping up and ramping down
Night	21 °C	-150 V	No measurement
Weekend	10 °C to 120 °C	off	No measurement

• The temperature range is driven by the limitations of ambient chamber and electrical components

Thermal cycle

- $\bullet\,$ Temperature of the ambient chamber is cycled at an average rate of 1.81 °C/mn.
- Humidity is maintained in such manner that dew point is always 10 0C less than the operating temperature of the ambient chamber.

Program	Temperature	Bias Voltage	IV Measurements
Day	-60 °C to 120° C	-50 V	Steps of 20°C: Ramping up and ramping down
Night	21 °C	-150 V	No measurement
Weekend	10 °C to 120°C	off	No measurement

• The temperature range is driven by the limitations of ambient chamber and electrical components

Thermal cycle

- $\bullet\,$ Temperature of the ambient chamber is cycled at an average rate of 1.81 °C/mn.
- Humidity is maintained in such manner that dew point is always 10 0C less than the operating temperature of the ambient chamber.

Program	Temperature	Bias Voltage	IV Measurements
Day	-60 °C to 120° C	-50 V	Steps of 20°C: Ramping up and ramping down
Night	21 °C	-150 V	No measurement
Weekend	$10 ^{\circ}\mathrm{C}$ to $120^{\circ}\mathrm{C}$	off	No measurement

• The temperature range is driven by the limitations of ambient chamber and electrical components

Use of different wafers: W3045 vs W3058

- Sensors testing from two different wafers fabricated at BNL
- W3045: First production, no passivation, no termination.
- W3058: Latest production, Silicon nitride/oxide passivation, Improved termination and contact

Depletion voltage

Observation

- Depletion voltage is independent of temperature.
- Breakdown voltage increases with temperature
- Leakage current of plateau increases with temperature

Breakdown voltage

Breakdown voltage results

• Breakdown voltage is estimated by two linear fits on the IV curve.

- Breakdown voltage increases linearly with the temperature
- New sensor shows improvement in breakdown voltage compared to the old sensor
- Breakdown voltage is consistent over different thermal cycles in the new wafer.

Results: Leakage Current vs Temperature

Operating Voltage

Leakage Current at Operating Voltage

13 / 26

Results: Leakage Current and Relative Humidity

• We keep the temperature constant at 20 0C and vary the humidity

- Depletion voltage is independent of humidity
- Breakdown voltage is independent of humidity
- Leakage current of plateau increases with humidity

Results: Leakage Current and Dewpoint

• We repeated the above measurements at different temperatures

• When dewpoint reaches 10°C closer to the temperature, a critical point humidity, the leakage current increases rapidly

Experimental Setup: Analog Signal Analysis

- DC-LGAD sensor is mounted to a readout board to measure analog signal pulses
- This setup is kept inside the ambient chamber together with IV setup and thermal cycled simultaneously

LGAD Readout board inside the ambient chamber

Experimental Setup: Analog Signal Analysis

- Analog signal analysis is performed before and after thermal cycling
- We use a Sr90 as signal source and measure the analog pulse using Waverunner 9404M-MS oscilloscope
- Signals are recorded outside the ambient chamber in an uncontrolled environment at room temperature inside a dark hood

Sr 90 Beta source is used to generate signal pulses

Analog signal pulses recorded by oscilloscope

Signal Pulse Amplitude

• Sample waveform of a signal measured before and after 8 thermal cycles.

Summary of Analog Signal

- Signal amplitude is consistent before and after thermal cycles.
- We observe the noise of the signals to have increased significantly.
- This discrepancy can be attributed to the electronics of readout board being impacted due to thermal cycling.

Thermal Cycles	Amplitude [mV]	Noise [mV]	Slew Rate [MV/s]	Jitter [ps]
Before Thermal Cycles	20.9°C	0.48	36.5	9.68
After 8 Day Cycles $+ 2$ Weekend Prog.	19.1°C	0.99	31.2	26.3

As this is a work in progress, we anticipate to perform a more comprehensive analog signal analysis in the future

Conclusion and Outlook

- Two different BNL-made LGAD sensors have been tested for weeks at extreme and rapidly changing temperature and humidity conditions.
- The results from the two sensors show consistent response of leakage current, and depletion, breakdown and operating voltages as functions of temperature and humidity.
- no deterioration of performance is seen in LGADs after weeks of thermal-cycling
- The new LGADs with an improved termination design shows slightly better performance than the old sensor design

-			
Parameters	Depletion Voltage	Breakdown Voltage	Leakage Current
Temperature	Independent	Dependent	Dependent
Humidity	Independent	Independent	Critical Humidity

• Thermal cycles will continue for several more weeks and performance will be assessed to test the limits of LGADs. Similar tests will be performed in the future for AC-LGADs and for sensors after irradiation.

BACKUP

Thermal Profile

- Studies repeated for stability under rapidly changing conditions.
 - → by abruptly changing the temperature changes between the cold (-30°C) and warm regimes (+30°C)

Diallo Boye: Brookhaven National Laboratory

Pad current vs Bias voltage: Ramp up

Pad current vs Bias voltage: Ramp down

Guard Ring current vs Bias voltage: Ramp up

Guard Ring current vs Bias voltage: Ramp down

