

USTC-IME LGAD pre-production for HGTD

Xiangxuan Zheng, Nov 30th On behalf of the USTC HGTD Group University of Science and Technology of China

Overview

- Introduction
- Performance of USTC-IME-v2.1 W17
- Probe station testing systems
- Yield estimation
- LGAD sensors on QC-TS
- Radiation hardness evaluation
- Collected charge and timing resolution
- Other results of QC-TS at USTC
- Summary

ATLAS HGTD project

- LHC (Large Hadron Collider) \rightarrow HL-LHC (highluminosity phase of LHC) in 2028 \rightarrow pileup vertex densities Λ
- ATLAS (one of the 4 major experiments at the LHC at CERN) \rightarrow upgrade its detectors
- The HGTD (High-Granularity Timing Detector) is chosen for the ATLAS Phase II upgrade.
- The time information be used as another ٠ dimension for identifying the hard-scattering vertex at the HI-IHC.
- HGTD should withstand the non ionizing radiation ٠ levels throughout the HL-LHC operations.
 - This determines lifetime
- Because of its good timing performance and ٠ radiation hardness, LGAD (Low Gain Avalanche Detector) has been chosen as the sensor.

ATLAS Detector in LHC

Position of the HGTD within ATLAS

truth interactions in a single bunch crossing in the z-t plane

Xiangxuan Zheng

Low Gain Avalanche Detector

- LGADs are n-in-p silicon detectors containing an extra highly-doped p-layer (gain layer) below the n-p junction.
- The high electric field in gain layer region will accelerate the drifting electrons and generate avalanches.
- With a proper design of gain layer, the LGAD can achieve promising S/N and time resolution.
- Designed parameters:
 - Active thickness: 50 μm
 - Pad size: 1.3 x 1.3 mm²
 - Collected charge (most probable value): > 4 fC
 - Time resolution: 40 ps (start), 70 ps (end of lifetime)
 - Hit efficiency: > 95%
 - Radiation tolerance: 2.5e15 n_{eq} cm⁻², 1.5 MGy

15x15 LGAD sensor

Low Gain Avalanche Detector (LGAD) R&D

- The reduction of effective doping in the gain layer is caused by the "acceptor removal" process → LGADs' gain reduces
- Explored use of different designs, doping materials and C-enriched substrates \rightarrow Boron + Carbon shows largest gain after irradiation ($C_i + O_i \rightarrow C_i O_i$ competes with $B_i + O_i \rightarrow B_i O_i$)

Quality Control Test Structure (QC-TS)

- QC-TS will be used by CERN to monitor the production process and perform quality assurance measurements on the supply for LGAD
- LGAD test sensors with the same gain layer design properties as the sensors organized as:
 - 1x1 LGAD, 1x2 LGAD
- Process control test structure that will provide diagnostic capability for the nearby main sensor. It shall be composed of:
 - PIN diode, MOS capacitor, 2 Gated diodes, 3 Van der Pauw structures

USTC's roadmap on LGAD R&D with IME

	USTC-1.0 Deliver: 2020.7	USTC-1.1 Deliver: 2020.10	Small 15 ¹⁵ USTC-2.0 Deliver: 2021.4	Small 15'15 USTC-2.1 Deliver: 2021.10	QC-TS 15*15 USTC-pre Deliver: 2023.6
	USTC-1.0	USTC-1.1	USTC-2.0	USTC-2.1	USTC-pre
Propose	First attempt	Improved the process technology, same layout as 1.0	New layout, mainly for yield study and issues fix	Same layout as 2.0, fast iteration	New layout, based on USTC-2.1-W17, in-kind/tendering preproduction. (10% of total supply ~2100)
Performance	Few sensors can work (VBD ~250V, VGL 40V)	~30% can work (VBD ~300V)	> 99% small sensors and ~35% 15x15 sensors can work, GR leakage disappeared. VBD lowered (~100-170V).	>99% small sensors and ~35% 15x15 sensors can work. Better uniformity, VBDs in ideal range (~150-240V).	Under test
Problem	Almost all sensors have large current (VBD < 10V)	Almost all sensors have large GR current	Too low VBD for some wafers.		

USTC-IME Pre-production sensor for HGTD

- 27 wafers have been produced without UBM, thinning and metallization on backside
 - 3 extra wafers are used for fine tuning of the carbon dose for future improvement
- The baseline wafer of USTC-IME pre-production is USTC-IME-v2.1-W17.

Xiangxuan Zheng

Performance of USTC-IME-v2.1 W17

[Paper link]

- For USTC-IME-v2.1, W17 shows the best performance after irradiation (fluences up to 2.5e15 n_{eq} cm⁻²) at safe bias (< 550V).
 - Collected charge > 4fC, time resolution < 70 ps, efficiency > 95%.
- USTC-IME-v2.1 W17 is chosen as the baseline wafer of USTC-IME pre-production.

Overview of USTC-IME Preproduction

Production version	Wafer No.	GL.Dose	Implantation	LGADs	VBD mean	Labelled	Thinned	Backside (Al)	UBMed	Diced	Yield	Quality				
	W1	Medium	B+1C	15x15	~ 182.8 V	Done					17/52 ~ 33 %					
	W2	Medium	B+1C	15x15	~ 186.5 V	Done	Done	Done		Done	2/52 ~ 4 %					
	W3	Medium	B+1C	15x15	~ 193.7 V	Done	Done	Done	Ready		26/52 ~ 50 %	Good				
	W4	Medium	B+1C	15x15	~ 190.8 V	Done	Done	Done	Ready		24/52 ~ 46 %	Good				Normal
	W5	Medium	B+1C	15x15	~ 191.7 V	Done	Done	Done	Ready		24/52 ~ 46 %	Good				
	W6	Medium	B+1C	15x15	~ 188.5 V	Done	Done	Done	Ready		22/52 ~ 42 %	Good				
	W7	Medium	B+1C	15x15	~ 184.9 V	Done	Done	Done	Ready		22/52 ~ 42 %	Good			Ν	
	W8	Medium	B+1C	15x15	~ 186.2 V	Done	Done	Done	Ready		22/52 ~ 42 %	Good		_	- V	VBD
	W9	Medium	B+1C	15x15	~ 195.6 V	Done					13/52 ~ 25 %				in	box1
	W10	Medium	B+1C	15x15	~ 193.6 V	Done					16/52 ~ 31 %					
	W11	Medium	B+1C	15x15	~ 192.3 V	Done	Done	Done	Ready		26/52 ~ 50 %	Good				
	W12	Medium	B+1C	15x15	~ 193.1 V	Done	Done	Done		Done	13/52 ~ 25 %					
	W13	Medium	B+1C	15x15	~ 188.8 V	Done	Done	Done	Ready		21/52 ~ 40 %	Good				
USTC-IME Bra production	W14	Medium	B+1C	15x15	~ 191.6 V	Done	Done	Done	Ready		18/52 ~ 35 %	Good				
Fie-production	W15	Medium	B+1C	15x15	~ 193.0 V	Done					12/52 ~ 23 %					
	W16	Medium	B+1C	15x15	~ 152.4 V	Done					23/52 ~ 44 %		Π			
	W17	Medium	B+1C	15x15	~ 150.4 V	Done					27/52 ~ 52 %					
	W18	Medium	B+1C	15x15	~ 137.7 V	Done					25/52 ~ 48 %					
	W19	Medium	B+1C	15x15	~ 146.5 V	Done					26/52 ~ 50 %					
	W20	Medium	B+1C	15x15	~ 138.9 V	Done					20/52 ~ 36 %					Low
	W21	Medium	B+1C	15x15	~ 127.5 V	Done					17/52 ~ 33 %					
	W22	Medium	B+1C	15x15	~ 143.6 V	Done					18/52 ~ 35 %					VBD
	W23	Medium	B+1C	15x15	~ 130.6 V	Done					15/52 ~ 29 %				Ir	1 box2
	W24	Medium	B+1C	15x15	~ 151.8 V	Done	Done	Done		Done	9/52 ~ 17 %					
	W25	Medium	B+1.3C	15x15	~ 116.9 V	Done	Done	Done		Done	27/52 ~ 52 %					
	W26	Medium	B+1.5C	15x15	~ 111.8 V	Done	Done	Done		Done	12/52 ~ 23 %					
	W27	Medium	B+0.7C	15x15	~ 158.1 V	Done	Done	Done		Done	25/52 ~ 48 %					

VBD: the voltage where the pad's leakage current reaches 500 nA.

The "Good" quality means the yield is more than 18/52 (~35%)

Probe station testing systems at USTC

Semi-Automatic probe station (R.T.)

• Vender testing

Manual probe station (Generally, chuck at 20 °C)

- Cross-check vender testing results
- Test the sensors by probe card and compare results with three probe needles

VBD Histogram (USTC-IME-pre W3)

Vth > 150 V to cut early breakdown pads, for calculation of mean per wafer.

Yield estimation (USTC-IME-pre W3)

With limits both on RMS and average breakdown voltage, combined results: yield $\sim 50 \%$

VBD Mean (V)

186.41

195.35

200.57

202.3

USTCIMEPreStats W3 File:W3 USTCIMEPreprod/USTCIMEPre W3

190.98

191.93

193.25

195.13

200.6

203.84

- The pads of PIN, 1x1 LGAD and 1x2 LGAD have the same area with pads of main sensor.
- The 1x1 LGAD and 1x2 LGAD have the same doping with the main sensor.
- The parameters extracted from the test structure can be used to estimate the nearby 15x15 main sensor.
 - Acceptor removal constant, collected charge, time resolution, efficiency etc.

Evaluation of radiation hardness

- Sensors were exposed to fluence up to 4e14, 8e14, 1.5e15 n_{eq} cm⁻² at the TRIGA reactor in Ljubljana, Slovenia with neutrons
- Acceptor removal constant (c-factor) is extracted from the gain layer depletion voltages obtained from CV curves: $\frac{V_{GL}(\Phi_{eq})}{V_{GL}(0)} = e^{-c \cdot \Phi_{eq}}$
- The c-factor of USTC-IME Preproduction W2-LGADs (1.21e-16 cm²) is similar to USTC-IME v2.1 W17-LGADs (1.23e-16 cm²), which means the gain layer is radiation tolerant.

Collected charge and timing resolution – irradiated

Beta-scope (⁹⁰Sr) @ -30 °C

Measured by JSI

The collected charge can be > 4 fC and timing resolution can be < 70 ps after irradiation (fluences up to $1.5e15 n_{eq} cm^{-2}$) at safe bias (<550V)

Xiangxuan Zheng

Other Results of QC-TS at USTC (by needle)

- Max depleted capacitance from CV of MOS capacitor can be used to get thickness of oxide. (0.91 0.96 μm)
- From VDP structure, resistance of different structures in LGAD can be extracted.
 - For N+ layer, ~38 Ω
 - For P-stop, \sim 34 Ω

Summary

- The USTC-IME preproduction sensors have been produced based on USTC-IMEv2.1 W17.
- The vender testing results shows that very good yield of around 40-50% is reached and 9 wafers with at least 18 good sensors are selected.
- The acceptor removal constant of W2 is 1.21e-16 cm², which means the gain layer is radiation tolerant.
- The charge collection can > 4 fC and timing resolution can be < 70 ps after irradiation (fluences up to 1.5e15 n_{eq} cm⁻²) at safe bias (< 550V).
- QC-TS will provide diagnostic capability to production process and perform quality assurance measurements for LGAD.
 - By now, most of the test results are in our expected range but some result still needs to be understood

Thank you RD50!

The USTC team acknowledges the strong support from the RD50 collaboration during the entire course of the LGAD RD!

Report	Meeting
Preliminary USTC-1 LGAD Results and Large Array Characterization for HGTD	37 th RD50 Workshop
Characterization on the radiation hardness of USTC-1.1 LGADs	38 th RD50 Workshop
Recent results of the carbonated USTC-IME LGADs and fabrication of the AC-LGADs at USTC NRFC	40 th RD50 Workshop
USTC-IME LGAD pre-production for HGTD	43 rd RD50 Workshop

Thank you for your attention!!

Back up

$W19 - V_{BD}$ Histogram

$W19 - V_{BD}$ RMS and Mean

Label of sensors

- The label is done by a unique binary-coded.
- The value of scratched pad is "1"
- The value of non-scratched pad is "0".

Checking of cutting edge

QC-TS:

Measurements of sensors' thickness (Profiler)

Version	Sensors	Size	Ground	Тор	Bottom	Left	Right	
	W2_P4	15x15	Wafer level	3 02.32 um	3 04.39 um	3 07.01 um	3 06.40 um	
	W24_P4	15x15		305.56 um	305.40 um	305.39 um	305.68 um	
USTS-IME Preproduction	W12_P1	15x15		301.83 um	301.60 um	304.44 um	302.16 um	
	W12_P49	12_P49 15x15	303.14 um	03.14 um 302.74 um 302.09 ur		302.20 um		
	W25_P1	15x15		301.18 um	300.80 um	303.43 um	302.45 um	

Check the effect of thinning, metallization on backside and dicing

- Delta VBD tested by probe needles = (VBD **on wafer level** VBD **after thinning**, **dicing** ...) (V)
- The uniformity of 15×15 sensor is consistent and the difference of VBD (Delta VBD) is within ± 2 V, which means the processes (thinning, metallization on backside and dicing) are reliable.

43rd RD50 workshop

Cross-check of 15×15 sensors by 15×15 probe card

• Tested by probe card while other pads are grounded and GR is floating, chuck at 20 °C

The 1D and 2D distribution of ΔVBD and ratio of I@0.8VBD

• Δ **VBD** = (VBD tested on wafer level by **probe needles** – VBD test by **probe card** after thinning, dicing ...) (V)

 The difference of VBD (ΔVBD) is in order of 10 V and the Ratio of I@0.8VBD for inner pads is in the range of 1.7-2.6, which is mainly related to the temperature of the chuck.

٠

Cross-check of 15×15 sensors by 15×15 probe card

• Tested by one probe needle while other pads and GR are floating, R.T.

IV results V_{BD} W20 P46 SE4-IP7 VBD hist labprob-Data-IV-2022Apr15-USTC15x15-0E0-W20-P46_SE4-IP7 [Log] RMS/Mean=0.0064 Unit: V ₹ 10 204 201 94 202 02 201 87 202 07 202 52 201 99 202 13 202 14 202 04 10-4 ũ 10⁻⁵ 203 10^{-6} 10-7 202 10⁻⁸ 10-9 201 10-10 10-1 200 10-12 10⁻¹ 199 10-1 40 100 120 140 200 220 Col number

• Tested by probe card while other pads and GR are grounded, chuck at 20 °C

The difference of VBD (Δ VBD) is also in order of 10 for USTC-IME-v2.1 sensors

29

USTC-IME-v2.1-W20_P46

Comparison of single LGADs (IV)

• Repeated testing on Cascade probe station at **R.T.** (vender test)

Testing on Apollowave probe station at different temperature of chuck (cross-check)

- The repeated vender test and cross check results is steady, respectively
- The difference of VBD is also in order of 10 V, which is related to the temperature of the chuck
- The ratio of I@0.8VBD is about 1.73

Comparison of single LGADs (CV)

 $\Delta \text{Conc.} (\text{Peak}) = 2 \times 10^{15} \text{ cm}^{-3}$

- The depletion voltage of gain layer is consistent
- ~ 1.5% variation on gain layer dose \rightarrow ~ 22.5 V variation the V_{BD}
- The true V_{BD} difference between W2 and W24 is about 36 V, maybe the difference between wafers isn't only caused by the dose variation

Timing resolution - calibration

Three HPK Type 1.1 sensors @180V, 20°C

Test1

- DUT(1): Sensor1
- Trigger(2): Sensor2

Test2

- DUT(1): Sensor3
- Trigger(2): Sensor2

Test3

- DUT(1): Sensor1
- Trigger(2): Sensor3

Test	Collected charge (MPV, fC)	∆TOA (ps)
1	Sensor1: 9.63 Sensor2: 9.92	52.99
2	Sensor3: 9.52 Sensor2: 9.93	56.66
3	Sensor1: 9.30 Sensor3: 9.39	56.41

$$\sigma_{3} = \sqrt{(\sigma_{\Delta TOA(1,3)}^{2} + \sigma_{\Delta TOA(2,3)}^{2} - \sigma_{\Delta TOA(1,2)}^{2})/2} \approx 42.33 \text{ ps}$$

$$\sigma_{2} = \sqrt{(\sigma_{\Delta TOA(1,2)}^{2} + \sigma_{\Delta TOA(2,3)}^{2} - \sigma_{\Delta TOA(1,3)}^{2})/2} \approx 37.28 \text{ ps}$$

$$\sigma_{1} = \sqrt{(\sigma_{\Delta TOA(1,2)}^{2} + \sigma_{\Delta TOA(1,3)}^{2} - \sigma_{\Delta TOA(2,3)}^{2})/2} \approx 37.66 \text{ ps}$$

Collected charge and timing resolution – W2

Beta-scope (⁹⁰Sr), preliminary results

Safe zone of bias voltage - Single Event Burnout (SEB)

- During the test beam, some sensor died at high bias voltage with the "star • shaped crater".
- The fatality was caused by the high energy deposition of one single beam particle.
- Some signals from the event in which sensor died were recorded and the • tracking information point to the place of the crater.
- This means bias voltage should not be too high, to ensure sensor won't be damaged.

Death within 1 ns of proton arrival.

Waveforms in fatal event

Safe zone of bias voltage

- The minimum of V_{SEB} is thickness dependent.
- The test result shows the electric field should be limited to < 11 V/ μ m.
- For 50 μ m sensors with adequate performance, the bias voltage should < 550 V.

Evolution of the c-factor from different vendors

- c-factor measured with CV method on the most promising wafer (rad. hard) for each vendors' run.
- With the carbon in the gain layer, the USTC LGAD prototypes show promising radiation hardness compared to other vendors.