Characterization of the last CNM fabrication of carbonated LGADs

Last 43rd RD50 Workshop CERN November 30th 2023

Jairo Villegas, Salvador Hidalgo, Milos Manojlovic, Neil Moffat, Guilio Pellegrini

Instituto de Microelectrónica de Barcelona (IMB-CNM) J. Villegas, 43rd RD50 Workshop

Outline

RDG Radiation Detectory Group

- Challenges in the production of LGADs for ATLAS & CMS
- Review of CNM LGAD Runs
- Run 15973
 - Characterization of LGADs (single-pad diodes) before irradiation
 - > Yield of pixelated LGADs from CNM Run 15973 (IVs with temporary metal)
 - > Characterization of irradiated LGADs (single pad diodes)
- Upcoming work

Challenges in the production of LGADs for ATLAS & CMS

Main challenges:

- I. Technology long-term reliability
 - > Trade-off between V_{BD} , V_{FD} and gain before irradiation
 - Trade-off between gain and operation voltage (< 11 V/µm) after irradiation</p>
- II. Large scale manufacturing yield
 - > Pixelated sensors of 15x15 pixels of 50 µm x 1.3x1.3 mm² (ATLAS)
 - > Pixelated sensors of 16×16 pixels of 50 µm x 1.3x1.3 mm² (CMS)
- III. Radiation tolerance to neutrons and protons
 - Carbonation of devices
 - > 4 fC @ V < 11 V/µm @ 2.5e15 1*MeV* n_{eq}/cm^2 @ -30°C (ATLAS)
 - > 8 fC @ V < 11 V/ μ m @ 1.5e15 1*MeV* n_{eq}/cm^2 @ -25°C (CMS)
- IV. Improve fill-factor
 - > IP = 47 μ m for pixelated devices of big area (ATLAS)
 - > IP = 80 μ m for pixelated devices of big area (CMS)

RDG Radiation Detectory Group

Review of CNM LGAD Runs

Instituto de Microelectrónica de Barcelona (IMB-CNM) J. Villegas, 43rd RD50 Workshop

CNM Run16602 (ongoing) : Overview

Wafer	Boron dose/ Boron Energy	Carbon dose/Energy
1	2.5e12/cm² / 480keV	
2	2.6e12/cm² / 480keV	5e13/cm² / 480keV
3	2.7e12/cm² / 480keV	

RDG Radiatic Detecto Group

- **CMS Mask:** 21 Pixelated sensors of 16x16 pixels of 50 μ m x 1.3x1.3 mm², IP = 80 μ m and high-energy implant profiles
- 3 boron doses and 1 carbon dose
- 6LG2 technology (LGADs on 6" Si-Si wafers and 350 µm of handle wafer) but with CNM clean-room new equipment
- Status : Metallization (85%)
- To be finished within 1 month
- 6 extra wafers on hold before carbon and multiplication layer implantation

Δ

CNM Run16602 (ongoing) : High Energy Implant profiles

Wafer	Boron dose/ Boron Energy	Carbon dose/Energy
1	2.5e12/cm² / 480 keV	
2	2.6e12/cm² / 480 keV	5e13/cm² / 480 keV
3	2.7e12/cm² / 480 keV	

RDG Radiation Detectory Group

- **CMS Mask:** 21 Pixelated sensors of 16x16 pixels of 50 μ m x 1.3x1.3 mm², IP = 80 μ m and high-energy implant profiles
- 3 boron doses and 1 carbon dose
- 6LG2 technology (LGADs on 6" Si-Si wafers and 350 µm of handle wafer) but with CNM clean-room new equipment
- Status : Metallization (85%)
- To be finished within 1-2 months
- 6 extra wafers on hold before carbon and multiplication layer implantation

CNM Run15973 : Overview

Wafer	Boron dose (1e13/cm²) / Energy (keV)	Carbon dose (1e14/cm²) / Energy (keV)
1		-
2	1.9 / 100	1 / 150
3		2 / 150
4		3 / 150
5		6 / 150
6		9 / 150
7		3 / 150
8		6 / 150

- ATLAS Mask: 26 Pixelated sensors of 15x15 pixels of 50 µm x 1.3x1.3 mm² and IP = 47 µm and traditional LGAD profiles
- 6LG2 technology (LGADs on 6" Si-Si wafers and 350 μm of handle wafer) but with CNM clean-room new equipment
- Single pad devices from wafers 1-6 were used for evaluation of radiation tolerance and electrical parameters trade-off
- Pixelated devices of wafer 7 were measured with temporary metal for yield evaluation

Conselo Superior de Investigaciones Cir

6

RDG Radiati Detecto Group

CNM Run15973 : Traditional LGAD profiles

Wafer	Boron dose / Energy	Carbon dose (1e14/cm²) / Energy (keV)		
1		-		
2		1 / 150		
3	1.9e13 / 100 keV	2 / 150		
4		3 / 150		
5		6 / 150		
6		9 / 150		
7		3 / 150		
8		6 / 150		

RDG Radiation Detectors Group

ATLAS Mask: 26 Pixelated sensors of 15x15 pixels of 50 µm x 1.3x1.3 mm² and IP = 47 µm and traditional LGAD profiles
6LG2 technology (LGADs on 6" Si-Si wafers and 350 µm of handle wafer) but with CNM clean-room new equipment
Single pad devices from wafers 1-6 were used for evaluation of radiation tolerance and electrical parameters trade-off
Pixelated devices of wafer 7 were measured with temporary metal for yield evaluation

CNM Run15973 : Microsection of a single-pad diode

 $V_{opMAX} = 540 \text{ V} (11 \text{ V/}\mu\text{m})^2$

Low resistivity p-type wafer

Wafer	Boron dose (1e13/cm²) / Energy (keV)	Carbon dose (1e14/cm²) / Energy (keV)
1		-
2	1.9 / 100	1 / 150
3		2 / 150
4		3 / 150
5		6 / 150
6		9 / 150
7		3 / 150
8		6 / 150

- ATLAS Mask: 26 Pixelated sensors of 15x15 pixels of 50 µm x 1.3x1.3 mm² and IP = 47 μ m and traditional LGAD profiles
- 6LG2 technology (LGADs on 6" Si-Si wafers and 350 µm of handle wafer) but with CNM clean-room new equipment
- Single pad devices from wafers 1-6 were used for evaluation of radiation tolerance and electrical parameters trade-off
- Pixelated devices of wafer 7 were measured with temporary metal for yield evaluation

8

RDG Radiation. Detectors Group

Characterization of single-pad diodes from CNM Run 15973 before irradiation

Instituto de Microelectrónica de Barcelona (IMB-CNM) J. Villegas, 43rd RD50 Workshop

Determination of V_{gl} for non-irradiated devices

RDG Radiation Detectors Group

10

CV measurements at 20°C, 10kHz and 500 mV AC

Determination of V_{BD} for non-irradiated devices

RDG Radiation Detectors Group

CNM Run15973 : V_{gl} and $V_{BD} @ -30^{\circ}C$ (non-irradiated)

- *V_{gl}* increases with carbon dose up to 3e14/cm² (> 15 CV measurements per carbon dose)
- V_{BD}@ 30°C decreases with carbon dose up to 3e14/cm² (> 20 IV measurements per carbon dose)
- Gain seems to increase with carbon dose up to a certain carbonation amount.
- Why? Diffusion of Boron of Phosphorus is supressed in the presence of carbon:
 - <u>https://doi.org/10.1063/1.113204</u>
 - <u>https://doi.org/10.1063/1.2234315</u>
 - https://doi.org/10.1116/1.2198858
 - https://doi.org/10.1049/el:20052999
 - https://doi.org/10.1063/1.122244

12

RDG Radiation Detector: Group

CNM Run15973 : TCAD-Simulated doping profiles

- TCAD simulation predicts this effect
- However, it does not predict the turning point at carbon doses > 3e14/cm²

- Room temperature (20°C)
- 15 keV X-rays (absorption depth of \approx • 1mm (just as near-IR 1064 nm TCT light)
- Beam size of 2.7x1.9 µm² focused on the center of the devices
- At the maximum intensity of the x-• ray beam (I_0) the gain suppression is also maximum
- Measurements confirm that a carbon dose of 3e14/cm² offer the highest gain (given a reverse bias)

 $Gain = \frac{I_{BeamOn}^{LGAD} - I_{leakage}^{LGAD}}{I_{-}^{PiN} - I_{-}^{PiN}} = \frac{Photocurrent_{LGAD}}{Photocurrent_{LGAD}}$

*Photocurrent*_{PiN}

14

RDG Radiat Detect Group

CNM Run15973 : Gain measurements with 15 keV x-rays at Diamond LightSource

Gain suppression was also observed.

RDG Radiati Detecto Group

Aluminum attenuators for the X-ray beam

0.5 mm Al \rightarrow attenuates 66% of the beam 1.0 mm Al \rightarrow attenuates 88% of the beam 1.5 mm Al \rightarrow attenuates 96% of the beam

5.0 mm Al \rightarrow attenuates **99.9993%** of the beam

For >1.5mm Al \rightarrow Photocurrent falls below leakage current for the reference PiN diode.

CNM Run15973 : SRP-extracted doping profiles

Resistance is measured between two probes. Then **resistivity** and **active doping concentration** is extracted from it

17

RDG Radiation Detectors Group

CNM Run15973 : SRP-extracted doping profiles

CS

CNM Run15973 : SRP-extracted doping profiles

Resistance is measured between two probes. Then **resistivity** and **active doping concentration** is extracted from it

19

RDG Radiation Detectors Group

Non-irradiated devices : Results overview

Characterization of the CNM Run15973 Single-pad diodes

- Good results in terms of leakage current
- Specifications before irradiation are achieved for both CMS and ATLAS (data in table for carbon dose = 3e14/cm²)

	Un-irradiated @ -25°C					
	V _{GL}	32 V				
CMS	V _{FD}	35 V				
	V _{BD}	122 V				
	l _{leak}	< 0.06 µA/cm2				
	V (8 fC)	< 100 V*				
	σ at V(CC > 8 fC)	< 50 ps*				

* See Efren's talk tomorrow * Viveka's presentation at : <u>https://indico.cern.ch/even</u> <u>t/1335539/</u>

20

RDG Radiation Detectors Group

Un-irradiated @ -30°C				
V _{GL}	32 V			
V _{FD}	35 V			
V _{BD}	117 V			
I _{leak}	< 0.06 µA/cm2			
V (4 fC)	< 80 V*			
σ at V(CC > 4 fC)	< 50 ps*			

Institut de Física d'Altes Energies

Yield of pixelated LGADs : IVs with temporary metal

Instituto de Microelectrónica de Barcelona (IMB-CNM) J. Villegas, 43rd RD50 Workshop

• Temporary metal is deposited to connect all pixels

				·									۰, m	·
<u>.</u>	•		·	• 		*		·	· _	•	•		·	·
<u>.</u>	•	<u>ہ</u>	<u>_</u>	ь 0	3	ه ۵	د ۵	<u>_</u>	د د	3 	ه ت	<u>ب</u>	<u>ہ</u>	د ص
* 		3 0	a 	ه ۲		* 	3 0	a 	a 	, 	ه ت	3 0	a ==	
, 	ء ص	а Ф	a ==	ه ۲	<u>ہ</u> ص	۶ د	3 0	a ==	a 		ه ت	a 0	a ==	3
	÷	0	• 	•	<u>ه</u>	÷.	0	a 			<u>ہ</u>	a 0	a 	
ه. ص	•		S		3 	a 		<u>ه</u>			ه <u>له م</u>	5	<u>ہ</u>	<u>ہ</u>
<u>.</u>	*					a EII				*			* 0	ь. О
ه ۲	ь сэ		ه ۵	ه ۲	<u>ہ</u>	ه د	ъ 	ه ۵	a []]		ه ت	3 0	ه ۵	
*. 	* •	4 0	a 	• =		* •	* 0	a 	a ==	, 	ه ت	3 0	a ==	
	÷	3 0	3 	ه ۵			3 0	*	•			3 0	ه ۵	<u>,</u>
	ه ۲	* 		۰ ۵	3 	e ==	* 			*	ه ۲	* 	<i>*</i> .	
3 0	ه ت	* 	ه د	د ت	3 23	a 23	<u>ہ</u>	د د	ء د	3 23	•	ء 	<u>ہ</u>	2. O
÷		*	3 []	ه ۲			* 0	a ==	a 	* 0	د د	*	a ==	3.
:	6	а С	a ==	ه ۲	ő	ь 0	а Ф	a 23	a ==	6	6	a 0	a 23	°

RDG Radiation Detectors Group

× CS

- Temporary metal is deposited to connect all pixels
- Leakage current is altered when the temporary metal is deposited
- These IVs measurement serve only to determine whether there is shortcut between pixels or not

23

RDG Radiatio Detector Group

SCS

Characterization of irradiated LGADs (single pad diodes)

Instituto de Microelectrónica de Barcelona (IMB-CNM) J. Villegas, 43rd RD50 Workshop

Centro Nacional de Microelectrónica

Instituto de Microelectrónica de Barcelona (IMB-CNM) J. Villegas, 43rd RD50 Workshop

Instituto de Microelectrónica de Barcelona (IMB-CNM) J. Villegas, 43rd RD50 Workshop

CNM Run15973 : Leakage current vs irradiation fluence @ -30°C

* CS

CNM Run15973 : challenges for irradiated LGADs

RDG Radiation Detectors Group

31

- CMS \rightarrow Data in table for carbon dose = 9e14/cm²
- ATLAS \rightarrow Data in table for carbon dose = $3e14/cm^2$.
- * See Efren's talk tomorrow (high spurious pulse levels beyond operation voltage)
- * Viveka's presentation at : <u>https://indico.cern.ch/event/1335539/</u>

	Un-irrac	liated @ -25ºC	Irradiated (1e15 n _{eq} /cm ²) @ -25ºC			
	V _{GL}	32 V	V _{GL}	14 V		
	V _{FD}	35 V	V _{opMAX}	540 V (= 11 V/μm)		
CIVIS	V _{BD}	122 V	V _{BD}	> 600 V		
	l _{leak}	< 0.06 µA/cm2	I _{leak}	33 µA/cm2		
	V (8 fC)	< 100 V*	V _{op} (8 fC)	540 V (= 11 V/μm)		
IF(A	σ at V(CC > 8 fC)	< 50 ps*	σ at V _{op} (8 fC)	< 60 ps		

	Un-irrac	liated @ -30ºC	Irradiated (2.5e15 n _{eq} /cm ²) @ -30ºC		
ΑΤΙΛΟ*	V _{GL}	32 V	V _{GL}	10 V	
AILAJ	V _{FD}	35 V	V _{opMAX}	540 V	
	V _{BD}	117 V	V _{BD}	> 600 V	
	l _{leak}	< 0.06 µA/cm2	l _{leak}	33 μA/cm2	
Institut de Física d'Altes Energies	V (4 fC)	< 80 V*	CC (540 - 600 V)	2-3 fC	
	σ at V(CC > 4 fC)	< 50 ps*	σ (540 - 600 V)	< 40 ps	

Upcoming work : CNM Run 16602

Wafer	Boron dose/ Boron Energy	Carbon dose/Energy
1	2.5e12/cm² / 480 keV	
2	2.6e12/cm² / 480 keV	5e13/cm² / 480 keV
3	2.7e12/cm² / 480 keV	

RDG Radiation Detectors Group

- CMS Mask: 21 Pixelated sensors of 16x16 pixels of 50 µm x 1.3x1.3 mm², IP = 80 µm and high-energy implant profiles
- No diffusion supression expected (Activation via RTA)
- **Lower noise** due to larger IP
- Once a boron dose is well set (expected breakdown between 50 - 300 V), 6 carbon doses will be used for the remaining 6 wafers

Acknowledgments

- Thanks to:
 - \succ Gregor Kramberger and the JSI team for the irradiation of samples
 - Viveka Gautam and the IFAE team for Sr-90 measurements.
 - \succ Ivan Vila, Efren Navarrete and the IFCA team for Sr-90 measurements
 - \succ Vishal Dhamgaye and the Diamond Lightsource team for their help at the Synchrotron facilities

Reference: PID2020-113705RB-C32

E INNOVACIÓN

ONDO EUROPEO DE

DESARROLLO REGIONAI I Ina manera de hacer Euron

AGENCIA ESTATAL DE

INVESTIGACIÓN

CVs for irradiated devices

Instituto de Microelectrónica de Barcelona (IMB-CNM) J. Villegas, 43rd RD50 Workshop

CNM Run15973 : surface current vs irradiation fluence @ -30°C

