

Radiation hardness studies of HAB HPK sensors

I. VELKOVSKA, J. DEBEVC, B. HITI, G. KRAMBERGER, I.MANDIC,

JOZEF STEFAN INSTITUTE,

R.MULARGIA

UNIVERSITY OF TORINO

RD50 WORKSHOP, CERN, 2023

Motivation

Acceptor removal limits radiation hardness of LGAD devices $B_s + Si_i \rightarrow B_i$; $B_i + O_i \rightarrow B_iO_i$ (the complete mechanism not yet fully explained)

Different ways to mitigate acceptor removal

Dope gain layer with carbon – approach for ATLAS HGTD and CMS ETL

➢Narrow B implantation (e.g. HPK-P2)

Partial activation of boron - this talk

>HPK has produced a Half Activated Boron (HAB) run of LGAD devices

>Part of boron is implanted, but not electrically activated in the gain layer

- Not activated boron could "protect" substitutional boron
- > Early results show potential improvement of radiation hardness (K. Hara, <u>18th Trento Workshop</u>)

HPK samples

>HPK provided three sample flavours which were characterized at JSI

- **Reference** (full boron activation)
- **>0.5 HAB** (same activated boron concentration as reference + non activated boron 0.5x reference)
- >1 HAB (same activated boron as reference + non activated boron 1x reference)

Samples were 2x2 LGAD arrays of 1.3x1.3 mm² and 50 μm thickness. Each pad had opening in metallization for light injection, but no opening was available in the inter-pad region.

- Samples irradiated with neutrons at JSI TRIGA reactor
 - ➢ Equivalent fluences of 8e14, 1.5e15, 2.5e15 cm⁻²
 - ➢annealed before the measurements to 80 min at 60 °C
 - Majority of samples sent to the AIDAINNOVA test beam in June and September and are still being analysed (still working on analysis tools)

Techniques used in this work : CV-IV, CC/timing performance, TCT

Acceptor removal constant

In irradiated samples measured V_{gl} values after FIRST application of bias voltage different from all subsequent measurements. Here showing results after second biasing.

c (1B1H)= 2.6e-16 cm² small effect of HAB on acceptor removal

JSI

.jubljana

Slovenia

Research

ar

HPK-HAB 1B1H

25

30

Measurements with Sr90

- ➢ JSI "Timing" setup with Sr90
- DUT cooled to -30 °C
- Coincidence trigger on PMT + reference LGAD -> DUT doesn't take part in trigger!
- Measurement of charge and time resolution as function of voltage
- Measurements done with fluences 0e14, 15e14, 25e14 cm⁻²
 - at 25e14 signal peak can not clearly separated from pedestal in the spectrum
 - a single pad was measured with the rest at GND

12/04/2023

JSI jubljana

Slovenia

а

Bias Voltage[V]

Bias Voltage[V]

- CC is correlated with V_{gl} (also the break down voltage) as expected the 1B1H breaks down early
- Collected charge significantly degraded at 15e14 cm⁻² results compatible with V_{gl} measured after this fluence
- Sample with highest implanted boron (1HAB) shows lowest degradation (10 fC at 550 V), but has also the highest initial V_{gl}
- > For beam operation the highest safe voltage is ~550 V (11 V/ μ m) single event burnout

Sr90: Time resolution

- Expected behavior for non-irradiated sensors:
 - due to early break-down 1B1H doesn't get close to Landau fluctuation limited time resolution
 - small gain of 1B05H prevents better time resolution
- > after 15e14 cm⁻² achievable time resolution just below 50 ps is reached for 1B1H -> corresponds to highest gain
- > Leakage current of irradiated samples confirms smaller gain for 1B05H and reference

JSI Ljubljana

Slovenia

Slovenia

a

TCT measurements

https://indico.cern.ch/event/1270076/contributions/5461468/attachments/2 670554/4629315/Skomina_RD50_MNE.pdf

- TCT setup at IJS with focused infrared light
- Test method: top-TCT in both Interpad and pad region
- measurements on non-irradiated and 15e14 cm⁻² samples
- measuring charge as function of voltage in inter-pad region / in 4 pads (2x2 array of pads)
 - similar to method for ATLAS-HGTD irradiation test during QC.
 - inter-pad region behaviour similar to PIN diode without gain
 - room temperature measurements (the correlating with low T has been shown for numerous ATLAS-HGTD samples)
- ➢ Extracted Parameters: V_{gl}, V_{fd} and Gain
- > HPK sample for TCT is wire-bonded with all pads together, GR floating

TCT measuring method – example for 15e14 cm⁻² 1B05H

350

Voltage

Gain-unirradiated HPK samples

JSI Ljubljana

Slovenian

Research Agency

- > At full depletion voltage gain approximately 1.5
- Gain increases to 2.5 at 350 V (max. achievable voltage with this method)
 - Leakage current scales the same good indication of gain
 - Modest gain
- Extracted Vgl indicates significant acceptor removal/gain degradation

	Vgl (V) TCT/CV
Reference	17.27/19.8
0.5 HAB	16.33/16.4
1 HAB	16.2/19.4

RD50

Conclusion

- Investigated HPK samples with partially activated boron as a way to mitigate acceptor removal by CV/IV, CC/Timing and TCT measurements
- Measured samples were irradiated to fluences of 0e14, 15e14 and 25e14 cm⁻² (IJS TRIGA neutrons)
- ➤CV/IV measurements:
 - acceptor removal constant shows improvement with respect to older runs, but the values are around 3x larger than that of best C-enriched gain layer designs (>2.5e-16 cm²)
 - > partial activation of boron shows only marginal improvement of radiation hardness
 - leakage current and CV of the samples don't exhibit any unexpected features
- Timing Sr90 measurements:
 - Significant degradation of collected charge after irradiation compatible with Vgl measurements
 - Due to highest doping before irradiation the best performance after 15e14 cm⁻² is measured for 1B1H sample, but the performance is comparable with HPK-P2 (ATLAS/CMS prototype run from 2020), while 1B05H and reference samples are worse
 - > The collected charge below 600 V can not be separated from the noise peak/pedestal at 25e14 cm⁻²
- **>**TCT analysis:
 - > Extracted V_{gl} and Gain from TCT in LGAD/inter-pad region gain can be measured at lower bias voltages and room temperature
 - > Only marginal gain up to 350 V for irradiated samples showing not sufficient radiation hardness
 - Measurements of Vgl compatible with CV

Samples with partially activated boron have slightly improved radiation hardness, but not on the level required for e.g. ATLAS-HGTD.

JSI ubljana

Slovenia

arr

BACKUP

 $\bullet \bullet$

JSI

HPK_HAB_1B+1HAB_15e14

HPK_1B+0.5_HAB_0e14

CC-Timing results

HPK_HAB_1B+0.5HAB_0e14

HPK_HAB_1B+1HAB_G5_15e14

HPK-HAB-1B+05HAB_0e14

JSI

Ljubljana

Slovenian

Research Agency

ar

304

TCT results for HPK samples

JSI Ljubljana Slovenian Research Agency

- ➢ Vgl 1/2/3/4- voltages for gain layer depletion for first/2nd/3rd/4th pad
- > Vfd 1/2/3/4-voltages for depletion of the bulk

Sample name	Fluence (neq/cm ²)	Vgl1 (V)	Vfd1 (V)	Vgl2 (V)	Vfd2 (V)	Vgl3 (V)	Vfd3 (V)	Vgl4 (V)	Vfd4 (V)
HPK_1B+1HAB_G8	1.50E+15	18.2708	50.459	16.0784	49.2573	16.4099	48.6787	/	/
HPK_HAB-1B+05HAB_G5	1.50E+15	16.5073	42.3672	16.334	44.162	16.1854	45.6856	16.3366	59.09
HPK_HAB_REF_1.05B_G5	1.50E+15	17.26	55.73	17.2965	56.5627	17.2983	55.9771	17.2506	56.1904
HPK_HAB_05HAB	0.00E+00	30	45.4058	28.6944	46.8783	27.6756	42.3771	33.2117	44.3157
HPK_HAB_REF_1B	0.00E+00	26.3666	32.9645	26.5046	35.5623	23.8224	37.145	27.3365	35.8261