## Last (43rd) RD50 Workshop on Radiation Hard Semiconductor Devices for Very High Luminosity Colliders (CERN)



Contribution ID: 75 Type: not specified

## Investigation of low gain avalanche detectors exposed to proton fluences beyond 1015 neq/cm2

Thursday 30 November 2023 17:00 (20 minutes)

The High Luminosity Large Hadron Collider upgrade will increase the luminosity of the LHC by a factor of 10. Low gain avalanche detectors (LGADs) promise excellent timing resolution, which can mitigate the pileup associated with high luminosity. The most highly irradiated LGADs will be subject to  $2.5 \times 10^{15}$  from 2 of hadron fluence during Run 4; their timing performance must tolerate this. Hamamatsu Photonics K.K. (HPK) and Fondazione Bruno Kessler (FBK) LGADs have been irradiated with 400 and 500 MeV protons respectively up to the Run 4 hadron equivalent fluence. Measurements of the irradiated LGADs' leakage current, capacitance, charge collection, and timing performance are presented. A timing resolution better than 70 ps is observed for all fluences. Charge collection is below 10 fC for the HPK sensors after  $(0.9\pm0.5)\cdot10^{15}$  from 2, and for the FBK sensors after  $(1.7\pm1.0)\cdot10^{15}$  from 2 for all operating voltages below 600 V. 2x2 arrays of both the FBK and HPK LGADs were produced to study the inter-pad characteristics. The inter-pad resistance for the HPK LGADs stayed slightly above 10 M $\Omega$  for  $5\cdot10^{14}$  from 2, and the inter-pad resistance of the FBK LGADs fell slightly below 1 M $\Omega$  after  $10^{15}$  from 2. Observations of the punch-through voltage and inter-pad isolation for fast signals are reported.

**Authors:** SORENSON, Josef Daniel (University of New Mexico (US)); HOEFERKAMP, Martin (Department of Physics and Astronomy); KRAMBERGER, Gregor (Jozef Stefan Institute (SI)); SEIDEL, Sally (University of New Mexico / ATLAS); SI, Jiahe (University of New Mexico (US))

Presenter: SORENSON, Josef Daniel (University of New Mexico (US))

Session Classification: LGAD