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Introduction - Single Event Burnout mechanism
In past beam tests, SEB have been observed on highly 
irradiated LGADs and PiN diodes with thickness of 45µm 
and 55µm

Death Mechanism:
Rare, large ionization event “Highly Ionising Particle”
Ø Excess charge leads to highly localized conductive path
Ø Collapse of the depleted active thickness
Ø Large current flows in a narrow path – “Single Event 

Burnout”

SEB consequence:
Ø Impossibility to operate irradiated LGAD (45- and 55-µm 

thick) sensors above 540V and 660V (Bulk-Efield =12V/µm)

SEB in thin LGADs and PiN diodes [15µm-35µm] was not 
studied

Localized Melt and vaporization of silicon 

SEM picture
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Beam test campaigns and sensors under test

Ø Two beam test campaigns at DESY (T22) in March 2023 and at CERN (H6) in 
July 2023) 

Ø 29 sensors from HPK2, FBK-UFSD4 and FBK-EXFLU0/1 have been tested:
• Sensors thicknesses of 15, 20, 25, 30, 35, 45 and 55 µm
• LGAD irradiated with neutrons up to 1E16 neq/cm2

• PiN Diodes unirradiated and irradiated up to 1E16 neq/cm2

• Different sensors geometry: single pad, 2x2, 5x5 array and large devices
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Beam test setups

Beam
Cold box

Movable stage

Telescope

Dry ice

Ø Temperature monitored with 
thermocouples and PT100

Ø Dry ice guaranteed a temperature 
between -50°C and -20°C for tens of 
hours and humidity below 10%

Same setup used at DESY (T22) and CERN (H6)

Monitored temperature at DESI beam testCold box with dry ice to operate irradiated sensors

BeamBeam test telescope 
with 6 sensor slots

Ø Counters (LGADs 300 µm-thick)
Ø DUTs
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Beams characteristics
CERN

Ø Beam Energy and type: 120 GeV/c 
Pions and Protons

Ø High intensity beam: ~1.5E106 

particles/cm2 per spill
Ø Beam size: ~ 2x2 cm2

DESY
Ø Beam Energy and type: 3.6 GeV/c 

electrons
Ø Beam rate: of ~1.2kHz/cm2 

Ø Beam size: ~ 1x2 cm2

DESY’s beam monitor

Data from beam scintillators
(saturation effect a 107 

particle per spill)
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SEB results - fatal electric field
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The thickness of the sensor 
determines the value of the fatal 
electric field

Ø Almost linear relationship between 
fatal electric field and sensor 
thickness
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SEB results - fatal electric field
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The thickness of the sensor 
determines the value of the fatal 
electric field

Ø Almost linear relationship between 
fatal electric field and sensor 
thickness

ØAlmost linear relationship between 
survival electric field and sensor 
thickness

30/11/2023 M. Ferrero, 43nd RD50 Workshop, CERN 7



1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

# 
N

um
be

r o
f p

ar
tic

le
s t

hr
ou

gh
 th

e 
se

ns
or

s

Sensors exposure at beam

Survival Run

Fatal Run

Exposure at fatal and survival Efield
Sensors burned out after an exposure to a 
number of particles about an order of 
magnitude lower compared with the survival 
runs

Ø Average number of particle through the 
sensors in fatal runs
• CERN: 105 – 9 !	107 hadrons
• DESY: 106 – 3 !	107 electrons

Ø Average number of particle through the 
sensors in survival runs
• CERN: 107 – 109 hadrons
• DESY: 107 – 108 electrons

CERN DESY
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SEB occurred in the same way and almost with the same statistic in small and large 
devices, in unirradiated and irradiated, in PiN and LGAD.
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SEB pictures

SEB craters are mainly located in 2 different regions on the sensors surface

14 sensors of 27 have the crater on 
the edge of the pixel were there are 
the n-deep implant and the metal 
contact between n++ and read-out 
electrode

Metal 
contact
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SEB pictures

8 sensors of 27 have the crater in 
the middle of the Guard-Ring were 
there is the the metal contact 
between n++ and read-out electrode

The shape of the metal contact 
(continuous or column) doesn’t 
affect the burnout

Metal 
contact30/11/2023 M. Ferrero, 43nd RD50 Workshop, CERN 10

SEB craters are mainly located in 2 different regions on the sensors surface



SEB pictures

2 sensors of 27 have the crater on 
the edge of the Guard-Ring (pixel 
side) were there is the n-deep 
implant. 

No metal contact is located on the 
edge of the GR 

Metal 
contact
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SEB craters are mainly located in 2 different regions on the sensors surface



SEB pictures

2 sensors of 27 have the crater in 
the middle of the pixel were there is 
an oxide layer between n++ and read-
out electrode

No metal contact and n-deep 
implant is located in the region of 
the crater
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SEB craters are mainly located in 2 different regions on the sensors surface



SEB pictures – Crater locations’ summary
SEB craters are located in 4 different places on surface of the sensor

On the edge of the pad
(14 sensors)

On the edge of the guard-ring (pixel side)
(2 sensors)

In the middle of the guard-ring
(8 sensors)

In the middle of the pad
(2 sensor)

Two sensors burned out 
not under beam

Complete collection of 
pictures in backup slides

30/11/2023 M. Ferrero, 43nd RD50 Workshop, CERN 13



Conclusion

Ø The SEB fatal electric field has an almost linear relationship with the nominal 
thickness of the sensors.

Ø No evident relationship between sensor geometry, irradiation level and SEB has 
been observed.

Ø Damages caused by SEB  on the sensor surface are localized on the edge of the 
pixel and on the guard-ring, where there are n-deep implant and metal contact. 

 Possible explanations:
• The large amount of current generated by high ionizing event is fatal for 

the metal contact
• the reduced active thickness due to the n-deep implant (pad edge and 

guard-ring) generates locally an higher Efield compared with the field below 
the n++ electrode
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Backup
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Beam test setups – DESY (T22) and CERN (H6)

DESY (march 2023)

Beam
Cold box

Beam Cold box

Instruments

CERN (July 2023)
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SEB collection
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UFSD4 W2 5x5 T9 GR3-0 4-6 (Irr 2E15) UFSD4 W2 5x5 T10 GR3-0 1-4 (Irr 2E15) UFSD4 W13 5x5 T9 GR3-0 5-6 (Irr 2E15)

UFSD4 W13 5x5 T10 GR3-0 4-6 (Irr 2E15) EXFLU0_55µm_W9 PAD1.3mm 8-4 PIN (1E15) EXFLU0_55µm_W7 PAD1.3mm 2-4 PIN (5E15)

EXFLU0_55µm_W7 PAD1.3mm 3-4 PIN (1E16) EXFLU0_45µm_W11 PAD1.3mm 3-4 PIN (1E15) EXFLU0_45µm_W11 PAD1.3mm 4-4 PIN (5E15)



SEB collection
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EXFLU0_45µm_W11-PAD1.3mm 5-4 PIN (1E16) EXFLU0_35µm_W6 PAD1.3mm 4-4 PIN (1E15) EXFLU0_35µm_W6 PAD1.3mm 9-5 (1E16)

EXFLU0_35µm_W6 PAD1.3mm 4-4 PIN(1E16) EXFLU1_30µm_W6 Pad1.3 S5 26-D PiN (new) EXFLU0_25µm_W5 PAD1.3mm 3-4 PIN (5E15)

EXFLU1_20µm_W17 Pad3.6 S5 11-F PiN (new) EXFLU1_20µm_W17 Pad1.3 S5 26-D PiN (new) EXFLU1_15µm_W18 Pad3.6 S5 11-F – PiN (new)



SEB collection
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HPK2_ 50µm-2x2-W37-P78 SE5-IP5 (Irr 1.5E15) HPK2_50µm-2x2-W28 - P60 (Irr 1.5E15) HPK2_50µm-16x16 - W21 P8 (Irr 1.5E15)

HPK2_50µm-16x16 - W1 P8 (Irr 2.5E15) HPK2_50µm-16x16 - W21 P5 (Irr 1.5E15) FBK-UFSD4-_55µM-16x16 - MS#9 (Deep-Irr 2.5E15)

FBK-UFSD4_55µm-16x16 - MS#2 (Shallow-Irr 2.5E15)


