Radiation resistance of Carbon-Shield LGADs and comparison with standard carbonated LGADs

M. Ferrero, A. Fondacci, A. Morozzi, C. Hanna, D. Passeri, F. Moscatelli, G. Borghi, G. Paternoster, L. Lanteri, L. Menzio, M. Costa, M.C. Vignali, M. Boscardin, N. Pastrone, N. Cartiglia, R. White, R. Arcidiacono, R. Mulargia, S. Giordanengo, T. Croci, F. Siviero, V. Sola

Motivation - Carbon Shield strategy to further improve LGADs radiation hardness

A Carbon shield infusion underneath the gain layer volume to protect the gain implant from the diffusion of defect complexes from the bulk region and the support wafer

Hypothesis:

→ Defect complex can be captured by the Carbon atoms, preventing the removal of acceptors

C-Shield LGAD in EXFLU1 production

Split table

Wafer #	Thickness	p+ dose	C dose	C shield	Diffusion
1	45	1.14	1.0		CBL
2*	45	1.00		0.6	CBL
3*	45	1.16	1.0	0.6	CBL
4*	45	1.16	1.0	1.0	CBL

- \succ The bulk of 45µm swapped to n-type
- Gain implant type: Shallow-CBL (no references in previous productions)
- > One dose of carbon (1.0C) implanted into the gain implant
- Carbon Shield obtained with a C-spray implant
- Two doses of Carbon shield (1.0C and 0.6C)
- > W1: reference wafer (No C-Shield)

W2: C-Shield only (No carbon into the gain implant) W3 and 4: Carbon into the gain implant + C-Shield

Irradiation campaign with neutrons up to fluences of 5.10¹⁵ n_{eq}/cm²

CV characteristics pre and post irradiation

No information on gain implant can be extracted from C-V measurements

Acceptor removal can't be estimated from C-V measurements

Pre-Irradiation CC measurements

Large spread in Charge-Bias curves due to strong Boron Inactivation in presence of C-Shield implant.

Wafer #	Thickness	p+ dose	C dose	C shield	Diffusion
1	45	1.14	1.0		CBL
2*	45	1.00		0.6	CBL
3*	45	1.16	1.0	0.6	CBL
4*	45	1.16	1.0	1.0	CBL

Pre-Irradiation CC measurements

45

45

1.16

1.16

3*

4*

0.6

1.0

1.0

1.0

CBL

CBL

Post-Irradiation CC measurements

Carbon-shield LGAD - UnIrr. and Irr. @ 1.5 and 2.5E10¹⁵ n_{eg}/cm²

CBL

CBL

Large spread in pre-Irradiation Charge-Bias curves will make postirradiation comparison difficult between wafers.

45

45

1.16

1.16

1.0

1.0

0.6

1.0

3*

4*

Figure of merit for post-irradiation comparison

Figure of merit for post-irradiation comparison

Effect of Carbon-Shield on radiation hardness of LGADs

Carbon-Shield LGADs - $\Delta V @ 5fC$

Wafer #	Thickness	p+ dose	C dose	C shield	Diffusion
1	45	1.14	1.0		CBL
2*	45	1.00		0.6	CBL
3*	45	1.16	1.0	0.6	CBL
4*	45	1.16	1.0	1.0	CBL

- ➤ The same value of ΔV(@5fC) for wafers 1, 3 and 4 demonstrates the ineffectiveness of carbon-shield
- W2 is less radiation resistant than W1/3/4. W2 demonstrates that the effect of the C-shield is not comparable with the carbon implanted into the gain region.

Conclusion and hypothesis of ineffectiveness of C-shield

> Carbon-shield doesn't improve the radiation hardness of LGADs.

hypothesis of ineffectiveness of C-shield:

Carbon shield doesn't screen the drift of bulk defects from the bulk towards the gain implant

The acceptor removal is a localized mechanism; only defects created in the gain region participate in acceptor removal mechanism.

Acknowledgements

We kindly acknowledge the following funding agencies and collaborations:

- ➢ INFN CSN5
- ➢ RD50, CERN
- AIDAinnova, WP13
- Compagnia di San Paolo
- Ministero della Ricerca, Italia, PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- Ministero della Ricerca, Italia, PRIN 2022, progetto 2022RK39RF ComonSens
- European Union's Horizon 2020 Research and Innovation programme, Grant Agreement No. 101004761

Backup

Post-Irradiation CC measurements

Carbon-shield LGAD - UnIrr. and Irr. @ 1.5 and 2.5E10¹⁵ n_{eg}/cm²

CBL

CBL

CBL

0.6

0.6

1.0

Large spread in pre-Irradiation Charge-Bias curves will make postirradiation comparison difficult between wafers.

45

45

45

1.00

1.16

1.16

1.0

1.0

2*

3*

4*

Time resolution

Wafer #	Thickness	p+ dose	C dose	C shield	Diffusion
1	45	1.14	1.0		CBL
2*	45	1.00		0.6	CBL
3*	45	1.16	1.0	0.6	CBL
4*	45	1.16	1.0	1.0	CBL