RD50 from Experiment perspective

Frank Hartmann – THANKS FOR ALLOWING ME TO TALK HERE

Well, we couldn't have done without RD50

What did we – THE EXPERIMENTS – get?

- Forum to discuss all
 - Reasonable and crazy ideas
- Recipes
 - What to build
 - How to operate
- Tools

/////

A Forum – a common goal

- Always difficult to understand which R&D effort is RD50 and what is experiment
 - I consider this perfect. It means we are sharing information on successes and failures
- I am unable to decide what is most efficient
 - The sessions with talks
 - The evening get-togethers
 - The coffee breaks
 - Lab visits

Well Ok, I can: It's the coffee breaks plus the common goal! I always enjoyed the clear and frank chats

• For LHC

- Oxygen is good Carbon is bad
- p-in-n is OK for Tracker
- n-in-n is OK for Vertex (oxygenated n-bulk)

• For HL-LHC

- Oxygen is good Carbon is also good at some places
- n-in-p is great
 - optimise thickness
- 3D is better
- Precise timing is possible

• A WISE MAN SAID:

For p-in-n sensors, the donor removal component of the Hamburg model cannot be described by a simple process V + P \rightarrow V P only. There is something more behind that and we still do not exactly understand what it is.

• RD50 ALSO CLEARLY TOLD US:

But, while new materials seem to be more radiation tolerant, a complete evaluation of each material must be conducted separately for neutron, proton and mixed irradiation. The correct radiation mixtures at different radii in the experiment should be checked.

Recipes

RD50 and Hamburg Model said p-in-n is OK for E14

Seems you are right

The CMS Tracker

- 200 m²
- Strips and pixel detectors
- Operating > 1 decade

CDS.CERN.CH

The ATLAS Tracker

- 60 m²
- Strips and pixel detectors
- Operating > 1 decade

LHCb until LS2

Strips n-in-n plus some n-in-p

Detector has accumulated fluence of approximately 7 x 10^{14} 1 MeV n_{eq} /cm²

And RD50 followed-up if all is true

19th RD50 workshop, November 2011 at CERN, especially in the session on **radiation damage observed in HEP experiments**

→ Inter-experiment radiation damage working group

Radiation Damage and Annealing exists

Inter-experiment radiation damage working group

- The Hamburg Model rocks
 - Good recipe when to increase bias voltages
 - Parametric description of operation parameters (signal, trapping, current) as a function of fluence and temperature.

Then we learned, we should use 'ELECTRON READOUT'

From RD50 (M. Moll)

CDS.CERN.CH

And, LHCB is ahead

- New VEO with n-in-p pixels
 - Exchanged in LS2

performance computers filter the collisions: only 1 out of 30,000 collisions is kept

ATLAS Phase II

Strips & Pixel All n-in-p

CMS Phase II

- Outer Tracker modules in final configuration
 - n-in-p

 Pixel Tracker module – n-in-p

HD full

High Granularity Calorimeter
 – n-in-p (8 in.)

SN

485

First RD50 workshop Silicon 3D radiation sensors: general characteristics; irradiation test results <u>Sherwood Parker</u> and Christopher Kenney (LBL Berkeley, USA)

Deep reactive-ion etching (DRIE) Courtesy of CNM-IMB (CSIC), Barcelona SiO₂ oxide polysilicon 🕂 Δ=0.4 μm Phosphorus Damping=0.8 µm diff. Very soft "corner Scalloping=0.2 µm

Evolution of 3D implementation

10um

- Double or single type?
- Double or single sided?
- Full 3D-pass-through?
- Thin or thick?

10um

Photos:

2um

→ ATLAS APPRECIATES - LO AS FIRST USE-CASE

 $25 \times 100 \ \mu m^2$ pixel cell size – n^+ pillar spacing Metal routing to a 50x50 μm^2 bump bonding (BB) pad grid passivation on top of routing, only pads open

Fig. 2.27 The final HL-LHC 3D sensor layout with $25 \times 100 \,\mu \text{m}^2$ pixel cells – 1E-scheme

Then there was head scratching

Then we had daring ideas 'to use' the amplification

Then we re-invented reach-through diodes – optimised them – and called them LGADs

ATLAS and CMS will equip their endcaps with LGADs to associate a timestamp to their tracks – 4D

Let's put LGADs at work

LHCb - LS4

Precision <u>timing</u> is key
 ... and do not forget <u>spatial</u> precision
 We need an upgrade on LGADs

From Abe Seiden, Hartmut Sadrozinski and Nicolo Cartiglia pioneers on LGADs:

I'm wondering if we can do both measurements (space and time) in one object, a silicon detector with very good timing resolution.

We thought it was a dumb question...but over lunch, we jotted down some numbers.

-- Thanks for the framework – and the BLUR

... The main question is understanding the gain in silicon sensors

In summary, I present THE ZOO

Anybody up for a bet?

or the new DC-RSD (DC-LGAD)

Tools, spearheaded, improved, standardized, distributed by RD50 - ANYHOW, THEY CHANGED OUR UNDERSTANDING SIGNIFICANTLY

- TCT front, back, edge and then TPA-TCT
- TSC, DLTS
- IV, CV
- Alibava
- Many more ...
- Custom simulation tools
- Radiation defect models, Hamburg Model

THANK YOU RD50

- IT WAS FUN
- TOGETHER RD50 AND EXPERIMENTS
 WE REALISED MARVELLOUS DETECTORS

• MORE TO COME BASED ON ALL THE GOOD WORK OF RD50