

Si3D detectors @ RD50

Maurizio Boscardin

Fondazione Bruno Kessler Trento

boscardi@fbk.eu

43rd RD50 meeting 27.XI.2023

Introduction: the "usual slide"

ADVANTAGES:

- Low depletion voltage (low power diss.)
- Short charge collection distance:
 - Fast response
 - Less trapping probability after irr.
- Lateral drift \rightarrow cell "shielding" effect:
 - Lower charge sharing
 - Low sensitivity to magnetic field
- Active edges

DISADVANTAGES:

- Non uniform spatial response (electrodes and low field regions)
- Higher capacitance with respect to planar (~3x for ~ 150 μ m thickness)
- Complicated technology (cost, yield)

The first paper

Nuclear Instruments and Methods in Physics Research A 395 (1997) 328-343

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

3D – A proposed new architecture for solid-state radiation detectors¹

S.I. Parker^{a, *}, C.J. Kenney^a, J. Segal^b

^a University of Hawaii, Honolulu, USA ^b Integrated Circuits Laboratory, Stanford University, Stanford, USA

Abstract

A proposed new architecture for solid-state radiation detectors using a three-dimensional array of electrodes that penetrate into the detector bulk is described. Proposed fabrication steps are listed. Collection distances and calculated collection times are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes confined to the detector surface, and depletion voltages are about two orders of magnitude lower. Maximum substrate thickness, often an important consideration for X-ray and gamma-ray detection, is constrained by the electrode length rather than by material purity or depletion-depth limitations due to voltage breakdown. Maximum drift distance should no longer be a significant limitation for GaAs detectors fabricated with this technology, and collection times could be much less than one nanosecond. The ability of silicon detectors to operate in the presence of the severe bulk radiation damage expected at high-intensity colliders should also be greatly increased.

Fig. 10. Top views (a)-(c), and side views (d)-(h) of several possible structures.

Process scheme

RD50 proposal

LHCC 2002-003 / P6 Submitted: 15 February 2002 **R&D** Proposal **Development of Radiation Hard Semiconductor Devices** for Very High Luminosity Colliders Spokesperson: Mara Bruzzi (University and INFN Florence) **Claude Leroy (Montreal University)** Contact at CERN: Michael Moll (CERN EP)

LHCC 15 May 2002 M. Bruzzi

LHCC 15 May 2002 M. Bruzzi

9

Deputy:

1st RD50 workshop 28-30 November 2001

UH 511-975-00

30 May 2001

Results from 3D silicon sensors with wall electrodes: near-cell-edge sensitivity measurements as a preview of active-edge sensors

Christopher J. Kenney, Sherwood Parker, and Edith Walckiers

Abstract—Silicon sensors with a three-dimensional architecture, in which the n and p electrodes penetrate through the entire substrate, have been successfully fabricated. The electrode spacing can be less than the substrate thickness, allowing short collection paths, low depletion voltages, and large current signals from rapid charge collection. This paper gives results when the cylindrical electrodes of the earlier papers are replaced by a combination of cylindrical and wall electrodes—ones in which a trench, rather than a hole, is filled with doped polycrystalline silicon. The detection efficiency remains high to within a few microns of these wall electrodes, and is an indication that similar high efficiencies should be achievable near the physical edges of the proposed active-edge sensors.

Index Terms—Active edges, insensitive edge regions, semiconductor sensors, silicon sensors, detectors, three-dimensional electrodes, 3D sensors, guard rings.

43rd RD50 meeting 27.XI.2023

1st RD50 workshop 28-30 November 2001

Laser drilling 0 O 1000 6KV X400 STATES IN 1816

3018 10KV X5.00K 6.00

UNIVERSITY of GLASGOW

GaAs •diameter :10µm. •depth :300-500µm.

R. Bate

Photoelectrochemical etching

1) Standard photolithography to create a mask in SiO₂ on the surface.

2) Creation of dimples in hot KOH.

3) The silicon etching process is a primary dissolution reaction of the silicon induced by the hydrofluoric acid and the photogenerated holes.

> Royal Institute of Technology KTH Stockholm. R. Bates

0000 10KY X4.00K

0000 10KV X6.00K 5.00

R. Bates

Fabrication of 3D detectors at The Detector Development Group of The University of Glasgow

Richard Bates

M. Rahman, G. Pellegrini, P. Roy, K. Mathieson, D. Jones, V. O'Shea, K.M. Smith, M. Horn, P. Thornton, J. Melone

	Dry etc	hing	
•			of GLASGOW
•		Inductively coupled plasma	
	, U	•Plasma etcher : SF_6 .	
8843 28KY X488 754.	250035 30KY X610 49ún	•Mask coating : C_4F_8 .	
	6121 01	 100 minutes of dry etchin 10μm holes in diamete 130μm deep. 	ng er
V			

43rd RD50 meeting 27.XI.2023

1st RD50 workshop 28-30 November 2001

43rd RD50 meeting 27.XI.2

1st RD-50 Workshop

8

4th RD50 workshop 5-7 May 2004

Talk on : Status of ITC-irst activities in RD50 *M. Boscardin*

Mask from Glasgow
 DEEP Rie Barcellona
 ITC –Irst process

7th RD50 workshop 14-16 November 2005 Single-Type-Column 3D detectors - concept

electrons are swept away by the transversal field

holes drift in the central region and diffuse towards p+ contact

SENSORS AND DEVICES

Main feature of proposed 3D-STC:

- column etching and doping performed only once
- holes not etched all through the wafer
- bulk contact is provided by a backside uniform p+ implant

NIM A 541 (2005) 441–448 "Development of 3D detectors .." Piemonte et al

7th RD50 workshop 14-16 November 2005

Single-Type-Column **3D detectors**

7th RD50 workshop 14-16 November 2005

On going activity

- ✓ University of <u>Glasgow</u> (UK): CCE measurements with α , β, γ on 3D diodes and short strips
- ✓ <u>SCIPP</u> (USA): CCE measurements on large strips
- ✓ INFN Florence (Italy): CCE meas with β ,on 3D diodes;
- ✓ <u>University of Freiburg (D);</u> measurements on short strips
- ✓ <u>Ljubljana</u>: TCT and neutron irradiation

High level of involvements of all the collaboration

From single type columns to p&n columns

single side process Low CE efficiency

Double side process High CE efficiency BUT only in central region (overlap between p & n columns)

13th RD50 workshop 10-12 November 2008

Double-sided 3D detectors at CNM

- Detectors fabricated at Centro Nacional de Microelectronica, Barcelona
- Columns are etched from opposite sides of substrate, and don't pass through full thickness
- Column fabrication
 - Reactive ion etching
 - Partial filling with polysilicon then doping

New fabrication run of 3D detectors, np and pn devices

G. Pellegrini, M. Lozano - CNM, Barcelona

<u>David Pennicard</u>, <u>Celeste Fleta</u>, Richard Bates, Chris Parkes, Lars Eklund, Tomasz Szumlak – University of Glasgow

Double Type Columns @ FBK

G. F. Dalla Betta, et al. "New developments on 3D detectors at IRST", IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS - MIC'07), Conference Record, paper N18-3, Honolulu (U.S.A.), Oct. 28 -Nov. 3, 2007

Fig. 2. Simulated electric field distribution in a 2-D cross-section taken along the cell diagonal. X and Y axis units are in μ m. The center of the junction column is at x = 0, the center of the ohmic column is at $x = 40\sqrt{2} \mu$ m. The isolines show electric field values in V/cm. Four cases are represented, from left to right: standard 3-D and 3-D-DDTC with d = 25, 50, and 75 μ m, respectively.

50

What does it mean to transition from a research phase to production?

specification to be fulfill

Main design specifications

- Two n⁺ (read-out) columns per 250 µm pixel (2E)
- Inactive edge width along beam direction (Z) < 225 μ m ٠
- Sensor thickness = $230\pm 20 \mu m$ ٠

	Parameter	Value
	Operation temperature $[T_{op}]$	20 ÷ 24 °C
Wafer-level	Depletion voltage [V _{depl}]	< 15 V
	Operation voltage $[V_{op}]$	$\geq V_{depl} + 10 V$
electrical tests	Leakage current at operation voltage $[I(V_{op})]$	< 2 µa (full sensor) < 200 nA (guard ring)
	Breakdown voltage [V _{bd}]	>25 V
	Leakage current "slope" [I (V _{op}) / I(V _{op} – 5V)]	<2

	Parameter	Value
On modules	Operation temperature	- 15°C
after irradiation	Operation voltage	<180V
at 5x10 ¹⁵ n _{eq} cm ⁻²	Power dissipation	< 60mW/cm ²
SENSORS AND DEVICES	Hit efficiency at 15° tilt angle	> 97%

Device dimension: from FE-I3 to FE-I4

18th RD50 workshop 23 - 25 May 2011

The ATLAS 3D Sensor Collaboration

- Approved in **2007** with the goal of "Development, Testing and Industrialization of Full-3D Active-Edge and Modified-3D Silicon Radiation Pixel Sensors with Extreme Radiation Hardness".
- The Collaboration includes 18 Institutions and 4(+1) processing facilities: SNF, SINTEF, CNM, and FBK (VTT joined later).
- Systematic studies on existing 3D samples from different foundries
- Focus on the ATLAS IBL since 2009

B. Stugu, H. Sandaker, K. Helle, (Bergen University), M. Barbero, F. Hügging, M. Karagounis, V. Kostyukhin, H. Krüger, J-W Tsung, N. Wermes (Bonn University), M. Capua; S. Fazio, A. Mastroberardino; G. Susinno (Calabria University), C. Gallrapp, B. Di Girolamo; D. Dobos, A. La Rosa, H. Pernegger, S. Roe (CERN), T. Slavicek, S. Pospisil (Czech Technical University), Jakobs, M. Köhler, U. Parzefall (Freiburg University), N. Darbo, G. Gariano, C. Gemme, A. Rovani, E. Ruscino (University and INFN of Genova), C. Butter, R. Bates, V. Oshea (Glasgow University), S. Parker (The University of Hawaii), M. Cavalli-Sforza, S. Grinstein, I. Korokolov, C. Padilla (IFAE Barcelona), K. Einsweiler, M. Garcia-Sciveres (Lawrence Berkeley National Laboratory), M. Borri, C. Da Vià, J. Freestone, S. Kolya, C. Li, C. Nellist, J. Pater, R. Thompson, S.J. Watts (The University of Manchester), M. Hoeferkamp, S. Seidel (The University) D. Su, C. Young, P. Hansson, P. Grenier, J. Hasi, C. Kenney, M. Kocian, P. Jackson, D. Silverstein (SLAC), H. Davetak, B. DeWilde, D. Tsybychev (Stony Brook University). G-F Dalla Betta, P. Gabos, M. Povoli (University and INFN of Trento), M. Cobal, M-P Glordani, Luca Selmi, Andrea Cristofoli, David Esseni, Andrea Micelli, Pierpaolo Palestri (University of Udine)

Processing Facilities: C. Fleta, M. Lozano G. Pellegrini, (CNM Barcelona, Spain); (M. Boscardin, A. Bagolini, G. Giacomini, C. Piemonte, S. Ronchin, E. Vianello, N. Zorzi (FBK-Trento, Italy), T-E. Hansen, T. Hansen, A. Kok, N. Lietaer (SINTEF Norway), J. Hasi, C. Kenney (Stanford). J. Kalliopuska, A. Oja (VTT, Finland)*

18 institutions and 5 processing facilities

ATLAS IBL: a common flor plan

G. F. Dalla Betta, et al. "The common floor-plan of the ATLAS IBL 3D sensor prototypes", 5th Trento Workshop, Manchester, Feb. 2010

CNM (Barcelona, Spain)

FBK (Trento, Italy)

43rd RD50 meeting 27.XI.2023

RD50

Main difference is the columns depth FBK = wafers thickness

• CNM < wafers thickness

ATLAS IBL: a compatible process

CNM (Barcelona, Spain)

G. Pellegrini et. al. NIMA 592(2008), 38 G. Pellegrini et. al. NIMA 699(2013), 27

A. Zoboli et. al., IEEE TNS 55(5) (2008), 2775 G. Giacomini, et al., IEEE TNS 60(3) (2013) 2357 G. Giacomini, et al., IEEE TNS 60(3) (2013) 2357 G. Giacomini, et al., IEEE TNS 60(3) (2013) 2357

FBK SEM pictures

20th RD50 workshop 30 may – 1 June 2012 3D Technology:

20th RD50 Workshop (Bari)

New fabrication run of CMS 3d pixel detectors at CNM

G. Pellegrini, C. Fleta, M. Lozano, D. Quirion,

Ivan Vila, F. Muñoz

T. Rohe

CNM-IFCA-PSI

Instituto de Microelectrónica de Barcelona

200um

Lessons learned from ATLAS IBL: Temporary Metal

FONDAZIONE BRUNO KESSLER

ATLAS IBL: a successful story

G. Darbo 2015 *JINST* **10** C05001 The ATLAS IBL collaboration 2012 *JINST* **7** P11010

Experience on 3D Silicon Sensors for ATLAS IBL

G. Darbo^{a*} on behalf of the ATLAS Collaboration

^aIstituto Nazionale di Fisica Nucleare - Sezione di Genova, via Dodecaneso 33, 16145 Genova, Italy E-mail: [giovanni.darbo@ge.infn.it]

2. Sensor design, production and results

The 3D silicon sensors used in the IBL have been produced by two silicon foundries $[\underline{6}, \underline{7}, \underline{8}]$: CNM¹ and FBK², on 230 μ m thick 4-inch FZ³ p-type wafers having a resistivity of 10 – 30 k Ω cm. A wafer floorplan and sensor geometry for FE-I4 $[\underline{5}]$ pixel front-end chip was defined in common with the different sensor producers participating in the prototype program coordinated by the ATLAS 3D Collaboration. A total of 8 FE-I4 single-chip sensors fits in a wafer layout. In addition to the two already mentioned foundries also SINTEF⁴ and SNF⁵ participated in the prototype program.

High radiation hardness at relatively low voltage

State of the art: ATLAS IBL 3D pixels

- Double-sided 3D (230 µm thick)
- Produced by CNM and FBK
- Excellent performance up to 5x10¹⁵ n_{eq} cm⁻², also pushed to ~1x10¹⁶ n_{eq} cm⁻² in AFP tests

43rd RD50 meeting 27.XI.2023

Pixel Roadmap LHC \rightarrow **HL-LHC**

N. Wermes, 9th TN Workshop (Genova, 2014)

Increased luminosity requires

- higher hit-rate capability
- increased granularity
- higher radiation tolerance
- lighter detectors

Next ROC generation (RD53 65 nm) 50x50 μ m² and 25x100 μ m² pixels C_{DET} \leq 100 fF I_{leak} \leq 10 nA/pixel (no amp. comp.)

Threshold: \sim 1000 electrons

Implications for 3D sensors

Modified technology/design for:

- thinner sensors
- narrower electrodes
- reduced electrode spacing
- very slim (or active) edges
- HL-LHC ATLAS and CMS Pixel TDR: 2017
- 3D pixels are an option for the innermost layers

27th RD50 workshop 2 – 4 Dec. 2015

CNM single-side process on SOI wafers

 Single-side process on thin SOI wafers developed at CNM since 2008 for different applications, here modified for back-side bias

SENSORS

27th RD50 Workshop (CERN) 2-4 December 2

Status of 3D detector activities at CNM

32th RD50 workshop 20 – 22 Dec. 2017

Sabina Ronchin

On behalf of the INFN (ATLAS - CMS) - FBK Pixel R&D Collaboration and WP7 - AIDA-2020

Si3D technology at FBK:

- Double-side 3D, produced by FBK for IBL \rightarrow
 - 4 inch Fz wafers
 - 230 un thick
 - "large" electrodes (12 μm)

- New single-side 3D technology/design for HL-LHC \rightarrow
 - 6 inch Si-Si and SOI wafers
 - thinner sensors (100-150 μ m)
 - narrower electrodes (5 μ m)
 - reduced inter-electrode spacing (~30 μm)

high Ωcm wafer

p++ low Ωcm wafer

43rd RD50 meeting 27.XI.2023

SENSORS AND DEVICES

FONDAZIONE BRUNO KESSLER

0

0

32th RD50 workshop 20 – 22 Dec. 2017

FONDAZIONE BRUNO KESSLER

0

0

FON BRUNO KESSLER

Almost completely

WD: 19.17 mm

Det: SE

Date(m/d/y): 02/18/16

filled with poly-Si

SEM HV: 30.0 kV

View field: 139 µm

SEM MAG: 1.99 kx

32th RD50 workshop 20 – 22 Dec. 2017

meta

IIIIIIII.

20 µm

VEGA3 TESCAN

Performance in nanospace

SEM HV: 30.0 kV

View field: 205 µm

SEM MAG: 1.35 kx

WD: 19.08 mm

Det: SE

Date(m/d/y): 02/18/16

50 µm

VEGA3 TESCAN

FONDAZIONE BRUNO KESSLER

Performance in nanospace

Small pitch 3D pixel layout

Mask Aligner

Stepper

M. Boscardin et al., Frontiers in Physics 8:625275

43rd RD50 meeting 27.XI.2023

Now: on going production

Production phase for ATLAS Itk

- Barrel (25 x 100 μm² 1E)
 - CNM, 4-inch wafers (~500 sensors)
- Endcap (50 x 50 μm²)
 - FBK and SINTEF, 6-inch wafers (800 sensors each)

Pre production Phase for CMS

Fbk, 6-inch wafers (~50 sensors)

ting 27.XI.2023

Not only silicon : SiC

The 39th RD50 Workshop (Valencia)

¹ Dalian University of Technology ² Institute of High Energy Physics Chinese Academy of Sciences

17-11-2021

Image of the filled metal indium electrode

Not only RD50 : RD42 Si3D on diamonds

Nuclear Instruments and Methods in Physics Research A 786 (2015) 97-104

A 3D diamond detector for particle tracking

F. Bachmair^a, L. Bäni^a, P. Bergonzo^{b,f}, B. Caylar^b, G. Forcolin^c, I. Haughton^c, D. Hits^a, H. Kagan^d, R. Kass^d, L. Li^e, A. Oh^{c,*}, S. Phan^d, M. Pomorski^b, D.S. Smith^d, V. Tyzhnevyi^c, R. Wallny^a, D. Whitehead^e

- ^a Department of Physics, ETH Zurich, Switzerland
- ^b CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif-sur-Yvette, France
- ^c School of Physics and Astronomy, University of Manchester, UK
- ^d Department of Physics, Ohio State University, USA
- ^e School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK
- ^f Electronics and Electrical Engineering Department, University College London, UK

43rd RD50 meeting 27

NUCLEAR NSTRUMENT & METHODS

IN PHYSICS RESEARCH

NEXT: 3D pixels for timing

• 3D sensors are also expected to be fast ...

S. Parker et al., IEEE TNS 58 (2011) 404

- Increasing interest in the past few years
- CNM 50x50 μm^2 single cells DS-3D (230 and 285 μm

thick) tested by several groups

G. Kramberger et al., NIMA 934(2019) 26C. Betancourt et al., MDPI Instruments 6 (2022)P. Fernandez Martinez et al. Pisa Meeting 2022

- Beta source setups, LGADs as reference
- Best result ~25 ps timing resolution

TIMESPOT trench 3D sensors

G. Forcolin et al., NIMA 981 (2020) 164437

A. Lampis et al., "10 ps timing with highly irradiated 3D trench silicon pixel sensors", JINST 18, C01051, 2023

Thank you all for your attention

Thanks to my colleagues at FBK

Thanks to all members of the RD50 collaboration

43rd RD50 meeting 27.XI.2023