

Gain suppression studies on LGAD sensors at the CENPA tandem accelerator (PIONEER Experiment)

Jennifer Ott* for the SCIPP and UW test beam group: University of Washington (Seattle): S. Braun, Q. Buat, B. Dodson, D. Hertzog, P. Kammel, C. Lansdell, D. Peterson, R. Roehnelt, E. Smith SCIPP, UC Santa Cruz: A. Molnar, Y. Zhao, S.M. Mazza, B. Schumm, A. Seiden

43rd RD50 Workshop, 28. November – 1. December 2023

*jeott@ucsc.edu

PIONEER Experiment

- New pion decay experiment approved at PSI, data taking to be started in 2028
- First beam time assigned in May 2022, second in November 2023

Phase 1
$$R_{e/\mu} = \frac{\Gamma(\pi^+ \to e^+(\gamma))}{\Gamma(\pi^+ \to \mu^+(\gamma))}$$

Lepton flavor universality \rightarrow charged lepton flavor universality violation? SM prediction ca. 15x more precise than experiment!

Phase 2 (3)

https://arxiv.org/abs/2203.01981

Tracker μ-RWELL

- Nominal design: homogeneous, cylindrical tracker
- Optimized experiment geometry: bulletshaped or spherical?

Active Target

3π calorimeter 7t LXe

- Dense, uniform
- Fast response, excellent energy resolution
- Challenges: photosensors, cost, photonuclear effects
- Alternative: LYSO:Ce crystal scintillators

Degrader Target

 Additional planes to slow down pion beam and potentially provide backward trigger/veto

Towards 4D (5D) tracking: Active TARget detector

Towards 4D (5D) tracking: Active TARget detector

- Active TARget: 2x2 cm² area, ca. 6 mm thick to stop 60-75 MeV pions
- Requirements:
 - Spatial resolution <200 μm
 - Timing resolution < 100 ps
 - Large fill factor: traditional LGADs with gain termination structures not feasible
 - Inactive material not desirable! Support wafers cannot be used.
 - Design baseline: 48 stacked planes of 120 μm thick AC-LGAD strips, pitch ca. 200 μm
- Challenge: large energy deposits by stopping particles
 - Investigating possibility of using pin sensors: simplification of energy response, but drawbacks in spatial resolution, signal-to-noise ratio, electronics integration time / timing resolution requirements

Gain suppression studies at CENPA,

Ott et al,

- Large dynamic range is required for the ATAR readout electronics to resolve MIP-like energies as well as hits from pions and muons – in particular, muon track from positron
- Limitations not only in the electronics: suppression of the gain has been reported in LGADs at high gain and/or large charge deposits
 - Cloud of charges in the gain layer generates electric field counteracting the external field, and thus reduces or prevents multiplication of subsequent charge carriers
- Investigation of gain suppression:
 - Injection with the laser higher power
 - Alpha particles
 - X-rays (cf. Simone's presentation)
 - Degraded charged particle beam
 - TCAD simulations (e.g. <u>Y. Zhao, CPAD 2022</u>)
 - Low-energy charged particle beam

- <u>Center for Experimental Nuclear Physics and</u> <u>Astrophysics</u> at University of Washington
- Van de Graaff tandem accelerator: negative ions are injected and accelerated, electrons are stripped away and beam is emitted as positive ions
 - E.g. hydrogen gas to provide **protons**
 - Beam energy controlled by electric potential
 - Energies used in this study: 1.8, 2, 3, 5 MeV

- Utilizing Rutherford Backscattering on a gold foil target to avoid direct exposure of the DUT to the beam
 - Scattering angle 110°
- Test board was mounted on a rotation stepping motor to vary the angle of the sensor with respect to the scattered beam
 - Scanned 0°-75°

scattered beam

Test board with sensor

Au foil target

Gain suppression studies at CENPA, 43rd RD50 Workshop

Ott et al,

Sensors tested

- Focus on a 'simple system': singlepad, standard DC-coupled LGADs
- Read out with UCSC 1-ch transimpedance amplifier board + 20 dB RF amplifier, and Tektronix DPO 7104 1 GHz oscilloscope
- Sensors tested at different bias voltages to study the effect of the gain itself on gain suppression

Sensor	Breakdown voltage (V)	Gain layer	Thickness (μm)	Pad size (mm)
НРК 3.1	230	Shallow (0.5-1µm)	50	1.3x1.3
НРК 3.2	130	Deep (1-2 μm)	50	1.3x1.3
HPK 3.2 pin	400	No gain	50	1.3x1.3

Ott et al, Gain suppression studies at CENPA,

- At **1.8 and 2 MeV** beam energy, beam stops in the sensor even at normal incidence and protons deposit maximum energy
- At 3 MeV, signal charge increases with angle/ $\sqrt{2}$ before stopping of the protons at ca. 50°

- At 1.8 and 2 MeV beam energy, beam stops in the sensor even at normal incidence and protons deposit maximum energy
- At **3 MeV**, signal charge increases with angle/ $\sqrt{2}$ before stopping of the protons at ca. 50°

- Angular dependence of gain
- At <10°, energy deposit within the same area: gain suppressed
- At increasing incident angles, gain increases as proton energy deposit is spread out over wider depth

Angular dependence of gain

- At higher angles (with the proton stopping in the sensor), the gain is suppressed again
 - Main energy deposit closer to the gain layer

- Higher bias voltage: higher initial gain
 - Larger gain increase and spread
 - Stronger gain suppression effect
- Similar for HPK 3.2, but less suppression with angle?

- Gain: pulse_area(device)/pulse_area(pin) for each angle and each bias voltage; pin at 200 V
- Higher gain for 3 MeV protons
- Less variation for HPK 3.2
- Gain suppression effect as function of incidence angle is stronger for higher bias voltages

- Less variation, less gain suppression for HPK 3.2
- At 1.8 MeV, higher bias voltages still provide high gain at 3 MeV, angular dependence of gain suppression is more pronounced

Gain suppression compared to MIPs

- Indeed less variation for HPK 3.2, but this may be due to its gain being already heavily suppressed compared to MIP charge deposition ٠
- Relation of HPK 3.1 data to gain determined with Sr-90 not entirely clear ٠
- Some technical challenges: ٠
 - It was not possible to consistently bias the sensors to the higher voltages = higher gains at the CENPA beamline: due to operation in vacuum? Ionization damage to the sensor surface or even the boards?
 - Measurements in the laboratory before and after CENPA test beam show some differences: not well understood; sensors possibly damaged during testing in beamline

- Single-pad LGAD and pin sensors from HPK were tested with a proton beam at the University of Washington CENPA tandem accelerator for the first time
 - Beam energy, sensor bias voltage and incidence angle were varied
 - Gain suppression and stopping of protons were observed
- The gain suppression phenomenon is limiting, or at least complicating, energy resolution in LGADs for large charges deposited in a small volume and close to the gain layer
- For PIONEER, potentially other applications as well: explore gain layer fabrication options to reduce the gain, i.e. ensure saturation of velocities at moderate voltages before gain-induced breakdown
- Next tests: BNL sensor production with thicker sensors and modified gain layer also open to testing other devices!
- Angular dependence of gain and signal sharing to be studied more extensively in the laboratory: more complex for strip sensors and AC-LGADs!
 - 2D laser scans
 - Alpha particle testing station in vacuum chamber
- Simulations: gain suppression is observed in simulations (cf. Michael's and Sebastian's talks) and can be explained with existing physics models
- 3D simulations require a lot of computing capacity, but are needed for accurate reproduction of the experimental data

My first RD50 workshop: Krakow 2017

J. Ott et al, Gain suppression studies at CENPA, 43rd RD50 Workshop

J. Ott et al, Gain suppression studies at CENPA,

Backup

J. Ott et al, Gain suppression studies at CENPA, 43rd RD50 Workshop

PEDER

A next generation rare pion decay experiment

W. Altmannshofer,¹ O. Beesley,² E. Blucher,³ A. Bolotnikov,⁴ S. Braun,² T. Brunner,⁵
D. Bryman,^{6,7} Q. Buat,² J. Carlton,⁸ L. Caminada,⁹ S. Chen,¹⁰ M. Chiu,⁴ V. Cirigliano,² S. Corrodi,¹¹ A. Crivellin,^{9,12} S. Cuen-Rochin,¹³ B. Davis-Purcell,⁷ J. Datta,¹⁴
K. Dehmelt,¹⁴ A. Deshpande,^{14,4} A. Di Canto,⁴ L. Doria,¹⁵ J. Dror,¹ M. Escobar Godoy,¹ S. Foster,⁸ K. Frahm,¹⁶ A. Gaponenko,¹⁷ A. Garcia,² P. Garg,¹⁴ G. Giacomini,⁴
L. Gibbons,¹⁸ C. Glaser,¹⁹ D. Göldi,¹⁶ S. Gori,¹ T. Gorringe,⁸ C. Hamilton,⁷ C. Hempel,⁷ D. Hertzog,² S. Hochrein,¹⁶ M. Hoferichter,²⁰ S. Ito,²¹ T. Iwamoto,²² P. Kammel,²
B. Kiburg,¹⁷ K. Labe,¹⁸ J. Labounty,² U. Langenegger,⁹ C. Malbrunot,⁷ A. Matsushita,²² S. Mazza,¹ S. Mehrotra,¹⁴ S. Mihara,²³ R. Mischke,⁷ A. Molnar,¹ T. Mori,²² J. Mott,¹⁷
T. Numao,⁷ W. Ootani,²² J. Ott,¹ K. Pachal,⁷ D. Pocanic,¹⁹ C. Polly,¹⁷ X. Qian,⁴ D. Ries,⁹ R. Roehnelt,² T. Rostomyan,⁹ B. Schumm,¹ P. Schwendimann,² A. Seiden,¹ A. Sher,⁷
R. Shrock,¹⁴ A. Soter,¹⁶ T. Sullivan,²⁴ E. Swanson,² V. Tishchenko,⁴ A. Tricoli,⁴ T. Tsang,⁴
B. Velghe,⁷ V. Wong,⁷ M. Worcester,⁴ E. Worcester,⁴ C. Zhang,⁴ Y. Zhang,⁴ and Y. Li⁴

Supported by the U.S. Department of Energy, Office of Science, Offices of High Energy Physics and Nuclear Physics; the U.S. National Science Foundation; JSPS KAKENHI (Japan); Natural Sciences and Engineering Research Council (Canada); TRIUMF; the Swiss National Science Foundation and PSI.

TCAD simulations: localized and spread charge

Track

Localized charge

SCIP

Gain suppression studies at CENPA, 43rd RD50 Workshop

Ott et al,

Energy deposit of protons in Si

Ott et al, Gain suppression studies at CENPA, 43rd RD50 Workshop

