First characterization of TI-LGAD technology in a test beam setup

Last (43rd) RD50 Workshop, Nov 2023, CERN

Accélérateur de science

Matias Senger

Anna Macchiolo Ben Kilminster

Giovanni Paternoster Maurizio Boscardin Matteo Centis Vignali

AIDAinnova WP6 \ test-beam group \

AIDAinnova WP6 test-beam group

- CNM-Barcelona (AIDAinnova): Oscar David Ferrer Naval
- IFCA (AIDAinnova + ETL): Ivan Vila Alvarez, Andres Molina Ribagorda, Jordi Duarte Campderros, Efren Navarrete Ramos, Marcos Fernandez Garcia, Ruben Lopez Ruiz
- IJS (AIDAinnova): Gregor Kramberger, Jernej Debevc
- University of Torino / INFN (AIDAinnova + ETL + EXFLU): Roberta Arcidiacono, Federico Siviero, Leonardo Lanteri, Luca Menzio, Roberto Mulargia, Valentina Sola, Marco Ferrero
- INFN Genova: Claudia Gemme
- UZH (AIDAinnova): Anna Macchiolo, Matias Senger
- Korea: D. Lee, W. Jun, T. Kim
- CERN: A. Rummler, V. Gkougkousis

43rd (last) RD50 Workshop · M. Senger (UZH) CERN 2023 Nov

3

The TI-LGAD technology

Goal: Sensor with small pixels (<= 100 um) and high Fill Factor (> 80%).

TI-LGAD FBK RD50 production:

- Trenches: 1 or 2.
- Contact type: "Ring" or "dot".
- Pixel border: "V1" < "V2" < "V3" < "V4".
- Trench depth: "D1" < "D2" < "D3".

Test beam setup

Simplified diagram:

- CERN H6 beamline (120 GeV pions)
- Mimosa telescope
- Chubut 2, 4 channels readout board¹
- CAEN DT5742 digitizer, 500 MHz @ 5 GS/s
- Cold box for irradiated DUTs, down to -12 °C
- Tracks reconstruction using Corryvreckan²
- ¹ <u>https://github.com/SengerM/Chubut_2</u> **4** ² <u>https://project-corryvreckan.web.cern.ch/project-corryvreckan/</u>

Test beam setup

Some photos:

kshor Nov

Waveforms analysis

We record the waveforms, then process them offline*. Example:

Tested devices

- All from FBK RD50 TI-LGAD production
- Same physical layout and connection \rightarrow
- 8 DUTs, details in table below L

device_name	wafer	trench process	trench depth	trenches	pixel border	contact type	Fluence (neq/cm²)
TI116	16	P2	D3	1	V3	dot	0.0E+0
TI122	16	P2	D3	1	V3	ring	0.0E+0
TI123	16	P2	D3	1	V3	ring	0.0E+0
TI143	16	P2	D3	1	V2	ring	0.0E+0
TI145	16	P2	D3	1	V2	ring	1.0E+15
TI146	16	P2	D3	1	V2	ring	1.0E+15
TI229	7	P2	D2	1	V3	ring	1.0E+15
TI230	7	P2	D2	1	V3	ring	1.0E+15

Worksho CERN 2023 Nov 7

* Devices were irradiated with reactor neutrons at JSI, Ljubljana.

** "device_name" can be ignored, it is shown here for curious readers who may want to see details from the examples.

Results

Waveforms distribution and events selection

9

Waveforms distribution and events selection

- Hits have large amplitude and well defined time.
- Empty waveforms have small amplitude (noise) and random time.

Waveforms distribution and events selection

A threshold in amplitude defines what we consider a hit in a pixel:

11

Tracks and hits on DUTs

• Each dot is a track

250 µm

GND CH3 CH4

GND GND GND

GND

- Colored according to which channel was hit
- Tracks reconstruction using Corryvreckan¹

CH1 CH2

* This example is for one DUT, they all look similar. ¹ <u>Corryvreckan - CERN</u>

Charge sharing in TI-LGADs

* This example is for two DUTs, they all look similar.

We look at the cluster size, i.e. number of active pixels per hit.

Charge sharing in TI-LGADs

* This example is for two DUTs, they all look similar.

Only ~1 % of events share charge, low value consistent with expectation \mathbf{V}

Example for two DUTs (similar for all of them):

14

What's the efficiency profile along two pixels?

Select tracks within these strips and project along x and y

200µ

• W16 D3 1T V3 ring

100

98

96

- 0 n_{eq} cm⁻²
- 230 V
- Room T

Efficiency (%)

• W16 D3 1T V3 dot

100

98

96

94

92

- 0 n_{eq} cm⁻²
- 230 V
- Room T

Efficiency (%)

Irradiated TI-LGADs

Waveforms distribution for irradiated TI-LGAD

- W7 D2 1T V3 ring: Low noise, amplitude threshold at -5 mV \swarrow (same as non irrad)
- W16 D3 1T V2 ring*: Noisier \rightarrow higher amplitude threshold & less gain \rightarrow lower efficiency 🙁

* During the test beam a single voltage point was taken, it is possible that if e.g. 490 V instead of 500 V would have been applied, the noise would be greatly reduced.

21

W7 D2 1T V3 ring

100

96

94

1n_{eq} cm⁻²

Efficiency (%)

- 525 V
- -12 °C

Efficiency measured in an area of the same size as a pixel. To avoid edge effects, take it close to the center:

- Global efficiency that a large area sensor would have
- Thanks to DUT symmetry, it is translation invariant
- Higher statistics

25

* Senger, M.; Macchiolo, A.; Kilminster, B.; Paternoster, G.; Centis Vignali, M.; Borghi, G. A Comprehensive Characterization of the TI-LGAD Technology. Sensors 2023, 23, 6225. <u>https://doi.org/10.3390/s23136225</u>

26

Inter-pixel distance (IPD)

* Unfortunately only one voltage point was taken for V2, it may happen that reducing the voltage a bit fixes this issue and efficiency goes up again

Conclusions

- TI-LGAD samples were characterized in a test beam setup.
- Before irradiation, 99.2±0.2 % efficiency measured.
- After 1e15 n_{eq} cm² with reactor neutrons, 97.4±0.6 % efficiency measured.
- Charge sharing between neighboring pixels very small.

Future work

- FBK AIDAinnova TI-LGAD production: Addition of carbon co-implantation for enhanced radiation hardness.
 - Laboratory testing.
 - Test beam testing.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004761. Backup slides

TCT characterization

Almost all design patterns from the FBK RD50 TI-LGAD production were ranked according to their inter-pixel distance as measured with laser TCT, more details in <u>https://doi.org/10.3390/s23136225</u>.

Time resolution

Measured in laboratory beta source setup as well as in test beam setup, see <u>https://doi.org/10.3390/s23136225</u> for more details.

