

Gallium Nitride for Radiation Hard Sensors

A. W. Walker, G. Villani, C. Storey, R. Griffin, J.-P. Noel, T. Koffas

National Research Council of Canada, Ottawa, ON, Canada STFC, Oxfordshire, United Kingdom Carleton University, Ottawa, ON, Canada RD50 Workshop November 29th, 2023

NRC works through collaboration

- 3,700 scientists, engineers, technicians, client relations experts and other specialists, including 255 SME technology advisors
- Manages 178 buildings in 72 locations across the country
- >\$1B annual expenditure, including \$271M in contribution funding for SMEs

Last year we worked with

- 4500 SMEs (advice)
- 3500 SMEs (funding)
- 1000 companies (R&D collaborations)
- 152 hospitals
- 72 colleges and universities
- 34 federal departments
- 39 provincial/municipal departments
- 36 countries

Advanced Electronics & Photonics Research Centre

Canadian Photonics & Fabrication Centre (CPFC)

- Pure-play foundry for 3" & 4" wafers
 - 10-100's of wafers per month (InP & GaAs)
 - Operates 2 multi-wafer MOCVD reactors (3 and 12 wafers)
 - Strong epitaxial growth of bulk and quantum structures

Advanced Technology Facility for R&D

 Newer technologies, proof of concept demonstration including GaN and GaSb processing

Materials & Devices

• Epitaxy (CBE, MBE), organics, *electronics*, photonics, systems & integration, thin-film optical coatings

GaN as a Radiation Hard Material for Sensing

Wide (direct) bandgap semiconductor (3.4 eV) with a wurtzite crystalline structure

High atomic bond energy (~9 eV/atom)

High bulk electron mobility (up to 2000 cm²/Vs)

• Even with high electron conc in 2DEG in GaN/AIN structures

High breakdown voltage (600-1200 V/µm)

High power density and faster switching speed compared to silicon \rightarrow power electronics

However, less mature technology, typically with high dislocation density >1E6 cm²

Goal of project to fabricate GaN Schottky devices using 8 µm GaN epi-layer on a n+GaN native substrate

Continuation of previous work presented at RD50 Workshop in June 2022 by J-P Noel

Processing Target Devices

Initial processing plan on 2" Kyma wafer:

- Deposit rear-side Ohmic metal with high temperature anneal
- Deposit front-side Schottky metal to test rectification behavior
 - Ni/Au Schottky metal with ~0.8 eV barrier after rapid thermal anneal
 - Variable area devices with & without guard rings to suppress surface leakage
 - Ring devices for charge collection

Summit 1200 Cascade probe station for automated measurements → statistics!

 Agilent 4155C Semiconductor Parameter Analyzer for I-V

Summit 1200 Cascade probe station for automated measurements → statistics!

- Agilent 4155C Semiconductor Parameter Analyzer for I-V
 - Evaluate impact of rapid thermal anneal on dark current

Summit 1200 Cascade probe station for automated measurements → statistics!

- Agilent 4155C Semiconductor Parameter Analyzer for I-V
 - Evaluate impact of rapid thermal anneal on dark current and on Schottky barrier height

Summit 1200 Cascade probe station for automated measurements \rightarrow statistics!

- Agilent 4155C Semiconductor • Parameter Analyzer for I-V
 - Evaluate impact of rapid thermal ۰ anneal on dark current and on Schottky barrier height
- Agilent 4284A Precision LCR • meter for C-V
 - Evaluate carrier concentrations

0

+ M

Impact of RTA on Unguarded Device Leakage

Plotting current density vs perimeter/area reveals bulk and surface contributions for *unguarded* devices

 $J = J_{perim} \times P/A + J_{bulk}$

Each data point has >100 devices

Shows a clear decrease in perimeter contributions for increasing RTA

• Note that no RTA data are outside range

Bulk contributions are in agreement (within uncertainty)

Impact of RTA on Guarded Schottky Devices

Scales are identical to previous plot

Data agrees with unguarded data from previous slide

But statistics are not sufficient: 4
devices per data point

RTA has minor impact on bulk dark current contributions once surface effects are effectively inhibited by guard ring

Carrier Concentrations from C-V

One area of wafer demonstrated no capacitance signal (tile 4)

 Devices showed low forward bias current

1/C² analysis reveals low carrier concentrations in the low 10¹⁵ cm⁻³ range, as expected from Kyma

- Small area devices show higher capacitance than expected
 - Fringe effects from large perimeter contributions → need simulations to confirm

TCAD Model Development

Silvaco Atlas to simulate GaN Schottky

- PIPINYS model describes a phononassisted electron tunneling effect:
 - Electron emission from local states at metal/semiconductor interface
 - Dependent on Schottky barrier height, trap energy level, trap density, phonon energy and electron-phonon interaction constant
 - Need parameters consistent with area → optimization!

Charge Collection Efficiency using UV Laser

Trilite NewWave Research, λ = 355 nm, <E> = 25 pJ, σ_E = 1.9 pJ, beam size 10 x 10 um²

Photoresponse versus position

10 um

Extracted charge ~100 fC \rightarrow ~1%

Visible Light Reduces Leakage

IV plot (FWD/REV) with NO LIGHT

IV plot (FWD/REV) with VISIBLE LIGHT

Trap saturation effect? \rightarrow Deep-level transient spectroscopy

16

Conclusions & Future Work

Received GaN/GaN wafers from Kyma with poor surface morphology...

- Reasonably low carrier concentration in low 10¹⁵ cm⁻³
- Material quality? Needs more study.

Demonstrated Schottky process showing rectification behaviour with sufficient thermal anneal

Performed preliminary UV responsivity measurements

- Requires further investigation for lower noise measurements, higher intensity
- Perform DLTS measurements coupled to TCAD

Future work involves testing NTT and Kyma wafers with further processing • • • 17

THANK YOU

Dr. Alex Walker • Research Officer • alexandre.walker@nrc-cnrc.gc.ca Advanced Electronics and Photonics Research Centre M-50, 1200 Montreal Road, K1A 0R6 Ottawa, ON, Canada

National Research Conseil national de Council Canada recherches Canada

Extracting Schottky Barrier Height and Ideality

Fit forward bias for V>3kT/q

Prior to series resistance roll-off

Ideality factor is also extracted as a function of bias

