SHINING AXIONS THROUGH ASTROPHYSICAL WALLS

BEN SAFDI BERKELEY CENTER FOR THEORETICAL PHYSICS UNIVERSITY OF CALIFORNIA, BERKELEY

ALFRED P. SLOANFOUNDATION

Office of

Science

DEPARTMENT OF

RGY

Pre-talk advertisement: new paper on higgsinos (talk to Linda Xu!)

CTA and SWGO can Discover Higgsino Dark Matter Annihilation 2405.13104

Nicholas L. Rodd,^{1,2,*} Benjamin R. Safdi,^{1,2,†} and Weishuang Linda $Xu^{1,2,\ddagger}$

¹Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, U.S.A. ²Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A. (Dated: May 24, 2024)

- 1. Thermal higgsino DM one of remaining, WIMP benchmarks (1.08 TeV)
- 2. Within reach of upcoming CTA
 - Even accounting for astrophysical uncertainties on DM and gamma-ray backgrounds
- 3. Existing H.E.S.S. results wrong by ~order of magnitude but wino still ruled out

Linda is here!

New ideas for axion detection (blue) without dark matter

Axion generated before inflation

Axion generated after inflation

M. Buschmann, J. Foster, **B.S.**, A. Hook, AMReX Collaboration, Nature Communications (2022) + work in progress

 $m_a \in (40, 180) \ \mu eV$

Motivated axion dark matter mass ranges $\mathcal{L} = g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$

Other groups disagree with our mass prediction $\mathcal{L} = g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$

In Progress: large-scale AMR axion strings simulations

Joshua Benabou, Malte Buschmann, Joshua Foster, **B.S.**

1. Large-scale AMR simulation of axion string from PQ into scaling regime Size

2022: 120^3 Hubble volumes at PQ phase transition

Dynamic Range 2022: finest level would need 65,536^3 cells to fill full lattice

New Simulation: finest level would need 262,144^3 cells to fill full lattice

Evolution time

2022: $\log(m_r/H) \sim 9$

New Simulation: $\log(m_r/H) \sim 10$

New simulation: 200³ Hubble volumes at PQ phase transition

Use ~1/10th of cluster over ~1 month (memory limited) ~30 million CPU-hours

*significant code improvements since 2022

In Progress: large-scale AMR axion strings simulations

Joshua Benabou, Malte Buschmann, Joshua Foster, **B.S.**

1. Large-scale AMR simulation of axion string from PQ into scaling regime

In Progress: large-scale AMR axion strings simulations "fake" log growth of index by choosing too aggressive UV/IR cut-offs

Suspicion: source of other group's log growth (can discuss more)

2312.0842 The Cosmological Dynamics of String Theory Axion Strings

Joshua N. Benabou,^{1,2,*} Quentin Bonnefoy,^{1,2,†} Malte Buschmann,^{3,4,‡} Soubhik Kumar,^{5,1,2,§} and Benjamin R. Safdi^{1,2,¶}

Kibble-Zurek: defect formation requires a spontaneously broken global symmetry

- 1. **PQ theory:** U(1)_PQ is spontaneously broken -> strings
- 2. **Extra-dimension scenario:** no spontaneous symmetry breaking as T passes below f_a ~ 1/R -> no strings
 - Exception: brane inflation gives second order phase transition for tachyonic mode -> string formation possible (e.g., wrapped brane production that may source axion strings)

PQ theory: radial mode -> 0 at core

string theory: extra dim decompactifies at core

None of following probes require axion to be DM

Upper limit on the axion-photon coupling from magnetic white dwarf polarization

Christopher Dessert⁽⁾,^{1,2,3} David Dunsky⁽⁾,^{1,2} and Benjamin R. Safdi⁽⁾,^{1,2} 2203.04319

Chris Dessert

David Dunsky

Axion contribution to optical MWD polarization

axion (unobserved)

unpolarized light MWD B-field

observe linear pol. light

$$\mathcal{L} = -g_{a\gamma\gamma} \frac{aF\tilde{F}}{4} = g_{a\gamma\gamma} a\mathbf{E} \cdot \mathbf{B}$$

*Side-note: MWDs are optimal. E.g. NS B-fields too large (Euler-Heisenberg effect)

only convert photons polarized along B-field

basic idea: Gill, Heyl 2011

Axion contribution to optical MWD polarization axion (unobserved) unpolarized light MWD B-field observe linear pol. light $\begin{vmatrix} \omega + \begin{pmatrix} \Delta_{\rm EH} & \Delta_B \\ \Delta_B & \Delta_a \end{vmatrix} - i\partial_r \begin{vmatrix} A_{||} \\ a \end{vmatrix} = 0 \qquad \Delta_a \sim \frac{m_a^2}{\omega} \qquad \Delta_B \sim g_{a\gamma\gamma}B$ $\Delta_{\rm EH} \sim \omega \left(\frac{B}{B_c}\right)^2 \qquad \left(B_c = \frac{m_e^2}{e} \sim 4 \times 10^{13} \ m\rm{G}\right)$ not important at optical frequencies $P_L \sim 1 - p_{\gamma \to \gamma} \sim 10^{-2} \left(\frac{g_{a\gamma\gamma}}{10^{-12} \,\text{GeV}^{-1}} \right)^2 \left(\frac{B_0}{1000 \,\text{MG}} \right)^2 \left(\frac{R_{\text{WD}}}{0.01 \,\text{R}_{\odot}} \right)^2$ many MWD polarization fraction true at optical polarizations at this frequencies but not Xlevel ray!

Axion contribution to optical MWD polarization axion (unobserved) unpolarized light MWD B-field observe linear pol. light $\begin{vmatrix} \omega + \begin{pmatrix} \Delta_{\rm EH} & \Delta_B \\ \Delta_B & \Delta_a \end{pmatrix} - i\partial_r \begin{vmatrix} \langle A_{||} \\ a \end{vmatrix} = 0 \qquad \Delta_a \sim \frac{m_a^2}{\omega} \qquad \Delta_B \sim g_{a\gamma\gamma}B$ $\Delta_{\rm EH} \sim \omega \left(\frac{B}{B_C}\right)^2 \qquad \left(B_c = \frac{m_e^2}{e} \sim 4 \times 10^{13} \ m\rm{G}\right)$ $P_L \sim 1 - p_{\gamma \to \gamma} \sim 10^{-2} \left(\frac{g_{a\gamma\gamma}}{10^{-12} \,\mathrm{GeV}^{-1}} \right)^2 \left(\frac{B_0}{1000 \,\mathrm{MG}} \right)^2 \left(\frac{R_{\mathrm{WD}}}{0.01 \,\mathrm{R_{\odot}}} \right)^2$

In practice: solve mixing numerically, including EH term and non-radial trajectories

Compare to Linear Polarization Data

SAO 6m telescope (Russia) 95% U.L.

- Only archival data available
- 2. People don't often
 look at MWD pol.
 because expected to
 be small

Astro model (arb norm) – we find no evidence

- 1. Zeeman effect has preferential absorption for different pols. -> large circular pol., small linear
- 2. Correlated systematic across wavelengths

MWD Polarization Results

axion (unobserved)

unpolarized light

observe linear pol. light

 $B_{
m pole} = 761 \pm 56 \ {
m MG}$ Zeeman shifts in bound-bound transitions

 $i = 74^{\circ} \pm 21^{\circ}$

angle w.r.t Earth (from circular polarization modeling)

 $P_L \lesssim 1\% \left(4000 - 6500 \,\mathring{A}\right)$

 $d \sim 70 \,\mathrm{pc}$

Many other MWDs available and better data could be obtained! (We are working on it ...)

MWD Polarization Results

MWD Polarization: Ongoing Work

Dedicated observations: Shane telescope and Keck

Chris Dessert

Christiane Scherb

Josh Benabou

Alex Filippenko + group (astronomy)

Axions can "shine through walls" in astrophysics

Leading Axion-Photon Sensitivity with NuSTAR Observations of M82 and M87

Orion $Ning^{1,2}$ and Benjamin R. Safdi^{1,2}

¹Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, U.S.A.

² Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.

(Dated: April 22, 2024)

2404.14476

$$\frac{dL_a(E)}{dE} = \frac{g_{a\gamma\gamma}^2}{8\pi^2} \frac{\xi^2 T^3 E}{e^{E/T} - 1} \sqrt{1 - \frac{\omega_{\rm pl}^2}{E^2}} \left[(E^2 + \xi^2 T^2) \log\left(1 + \frac{E^2}{\xi^2 T^2}\right) - E^2 \right]$$

 $\overline{\xi} = \kappa/(2T)$ κ : Debye Screening Scale

Run MESA over Initial Stellar Mass Function Example 20 Solar Mass star in RSG phase

NuSTAR axion search – M82

M82 Facts

- Starburst galaxy: high star-formation rate = lots of hot, young, massive stars
- 2. Around 3x10¹⁰ stars
- 3. ~3.5 Mpc from Earth
- 4. Starburst = high magnetic fields
- 5. Seen almost edge on -> high axionphoton conversion

Axion luminosity dominated by RSG and O-type stars

NuSTAR axion search – M82

M82 Analysis

- 1. ~4 Ms of archival NuSTAR data
 - 1. no excess over bkg. + astro model (PL)
- 2. Model magnetic field using analogues in

Leading Upper Limits from M82/M87

Extending reach to higher axion masses:

higher energies, smaller length scales

Supernova axions convert to gamma-rays in magnetic fields of progenitor stars

Claudio Andrea Manzari,^{1,2} Yujin Park,^{1,2} Benjamin R. Safdi,^{1,2} and Inbar Savoray^{1,2} ¹Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, U.S.A. ²Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A. (Dated: May 31, 2024) 2405,19393

Neutrinos produced from cooling proto-NS in SN1987A

Proto Neutron Stars from SN also produce axions

(Loop-induced production from nucleons important for ALPs)

(SN simulations from the Garching core-collapse supernova archive)

Average axion luminosity over 10 s (this work)

Old idea: SN axions convert to gamma-rays in

Galactic fields

New Idea: gamma-rays from SN1987A progenitor B-field New proposal! Convert on progenitor stellar magnetic field SN1987A: in the LMC at d ~ 50 Mpc

> solar maximum mission

stellar B-field of progenitor star

~100 MeV

axion

New Idea: gamma-rays from SN1987A progenitor B-field

SN1987A progenitor: Sk -69 202 progenitor conversion probability:

- 1. Blue Supergiant
- 2. $Rpprox 45 R_{\odot}$
- 3. B ~ 1 kG

 $\sim 10^{-5} \left(\frac{g_{a\gamma\gamma}}{10^{-12} \text{ GeV}^{-1}} \right)^2$ Matches Galactic conversion prob.!

 $P_{a \to \gamma} \sim g_{a \gamma \gamma}^2 B^2 L^2$

when does mass-dependence come in?

$$\delta kL \approx \frac{m_a^2}{2\omega} L \sim \frac{m_a^2}{200 \text{ MeV}} 45 R_{\odot} \sim \left(\frac{m_a}{4 \cdot 10^{-5} \text{ eV}}\right)^2 >$$

New Idea: gamma-rays from SN1987A progenitor B-field

New Idea: gamma-rays from SN1987A progenitor B-field

Future supernova

Galactic supernova rate ~1 per 100 years:

what would we learn about axions from next Galactic supernova?

Answer: likely nothing! Chance of Fermi-LAT seeing next SN is ~1 in 10

(pre-SN neutrinos could give indication for SN within ~1 kpc)

Future supernova

But what if Fermi did catch the next Galactic SN?

Future supernova: axion signal with Fermi-LAT

Future supernova

Huge opportunity for axion physics, but we are not even close to being ready!

Proposal: Full-Sky constellation of SmallSats for continuous, full-sky ~100 - 500 MeV gamma-ray detection

GALactic AXion Instrument for Supernova (GALAXIS)

Also ~annual axion science from extragalactic SN and NS-NS mergers

Axions from NS-NS mergers may produce gamma rays

GW170817 (NS-NS merger) in 2017 at d = 40 Mpc

IF IT'S OUT THERE, WE WILL FIND IT!

12.6

U.S. DEPARTMENT OF ENERGY

Internal simulation quantities

Internal simulation quantities

Effective Area

SMM gamma-ray data SN1987A

Systematic: changing the BSG surface field strength

Systematic: changing the SN simulation

Systematic: BSG instead of RSG

Systematic: removing pions

