BARYON ASYMMETRY FROM A SCALE HIERARCHY

Based on arXiv:2401.13734 with Kwang Sik Jeong, Chang Hyeon Lee, and Chang Sub Shin

Jae Hyeok Chang Fermilab and UIC

06/13/2024 Crossroads between Theory and Phenomenology, CERN

INTRODUCTION

Fundamental Scales

• Plank mass $M_P = G^{-1/2} \sim 10^{19} \,\text{GeV}$

• Electroweak scale
$$v \sim G_F^{-1/2} \sim 10^2 \text{ GeV}$$

• Hydrogen mass $m_H \sim \Lambda_{\rm QCD} \sim 1 \ {\rm GeV}$

Hierarchy between scales

• We consider results of the scale hierarchy

Results from the scale hierarchy

• The number of atoms inside the Sun

$$N \sim \frac{M_{\odot}}{m_H} \sim 10^{57} \sim \left(\frac{M_P}{m_H}\right)^3$$

• This is not a simple coincidence!

The Chandrasekhar limit

without prefactors

Typical stars like the Sun have masses near the Chandrasekhar limit

 $M_{\odot} \sim \frac{M_P^3}{m_{\scriptscriptstyle H}^2}$

• If $M_P \sim m_H$, the sun would be super tiny

 We can express an observed hierarchy with a fundamental scale hierarchy

$$\frac{M_{\odot}}{m_H} \sim \left(\frac{M_P}{m_H}\right)^3$$

 This may not be just a coincidence but a result of underlying fundamental physics

- There is a hierarchy between the neutrino mass and the electroweak scale
- This can be explained between a hierarchy between the electroweak scale and the GUT scale:
 the seesaw mechanism

$$\frac{m_{\nu}}{v} \sim \frac{v}{M_{\rm GUT}}$$

 The relic abundance of dark matter today from the freeze-out mechanism can be expressed as

$$Y_{DM} \equiv \frac{n_{DM}}{s} \sim 10^{-12} \left(\frac{100 \text{ GeV}}{m_{DM}}\right) \sim \frac{1}{g_* \alpha_{DM}^2} \frac{m_{DM}}{M_P}$$

• Choosing $m_{DM} = v$ and $\alpha_{DM} = \alpha_W$ gives the correct relic abundance, called the "WIMP miracle"

Matter-Antimatter Asymmetry

Baryon asymmetry from a scale hierarchy

- We propose a model that the baryon asymmetry directly comes from a scale hierarchy in a simple setup
- Two fundamental mass scales in nature
 - The reduced Planck mass : $M_P = (8\pi G)^{-1/2} = 2.4 \times 10^{18} \text{ GeV}$
 - The electroweak scale : $v = (G_F \sqrt{2})^{-1/2} = 246 \text{ GeV}$

$$Y_B \sim \frac{1}{g_*} \sqrt{\frac{v}{M_P}} \sim 10^{-2} \sqrt{\frac{246 \text{ GeV}}{2.4 \times 10^{18} \text{ GeV}}} \sim 10^{-10}$$

Affleck-Dine baryogenesis during the radiation domination

Neutrino-Portal Affleck-Dine Baryogenesis

- We have a complex scalar filed ϕ , an AD field that carries a B L number
- If the AD mechanism happens during the radiation-dominated era, we get

$$Y_{\phi} = \mathcal{O}(0.01) \sqrt{\frac{m_{\phi}}{M_P}}$$

Neutrino-Portal Affleck-Dine Baryogenesis

- We have a complex scalar filed ϕ , an AD field that carries a B L number
- If the AD mechanism happens during the radiation-dominated era, we get

$$Y_{\phi} = \mathcal{O}(0.01) \sqrt{\frac{m_{\phi}}{M_P}}$$

• If $V(\phi) \supset m_{\phi}^2 |\phi|^2$ is radiatively stable due to the same mechanism for Higgs boson, we can expect

$$m_{\phi} \sim v \quad \Rightarrow \quad Y_{\phi} \sim 10^{-10}$$

- All the asymmetry of ϕ transfers to *B* and *L* sector through the neutrino portal and the weak sphaleron process
- The model predicts a relic Majoron, with $\sim \text{keV}$ mass and $\sim v$ decay constant, which contributes to ΔN_{eff}

REVIEW OF AD BARYOGENESIS

Based on "A mini review on Affleck–Dine baryogenesis" by Rouzbeh Allahverdi and Anupam Mazumdar, 2012

Scalar Potential

$$V = (m_{\phi}^2 - \kappa_H H^2) |\phi|^2 + \frac{\kappa^2}{M_P^2} |\phi|^6 - \alpha m_{\phi} \frac{\kappa}{4M_P} (\phi^4 + \phi^{*4})$$

- ϕ is a flat direction with a global U(1) symmetry
- U(1) is explicitly broken by the Planck suppressed operator
- Note we have the Hubble induced mass term with a choice of a negative sign
- This potential is natural with SUSY, but it is not necessary

Affleck-Dine Mechanism

Affleck-Dine Mechanism

$$V(r,\theta) = \frac{1}{2} \left(m_{\phi}^2 - \kappa_H H^2 \right) r^2 - \frac{\kappa \alpha m_{\phi}}{8M_P} r^4 \cos 4\theta + \frac{\kappa^2 r^6}{8M_P^2} + \cdots \quad \left(\phi = \frac{1}{\sqrt{2}} r e^{i\theta} \right)$$

• Net number density of ϕ is

$$\bar{n}_{\phi} = i \left(\dot{\phi}^* \phi - \phi^* \dot{\phi} \right) = r^2 \dot{\theta}$$

- Generation of angular momentum gives the asymmetry of ϕ
- AD mechanism happens during early-MD because the thermal potential $\lambda T^2 r^2$ spoils the scalar dynamics
- Final asymmetry depends on the reheating temperature $T_{\rm rh}$

NEUTRINO-PORTAL AFFLECK-DINE MECHANISM

What's the difference?

$$V(r,\theta) = \frac{1}{2} \left(m_{\phi}^2 - \kappa_H H^2 \right) r^2 - \frac{\kappa \alpha m_{\phi}}{8M_P} r^4 \cos 4\theta + \frac{\kappa^2 r^6}{8M_P^2} + \cdots \quad \left(\phi = \frac{1}{\sqrt{2}} r e^{i\theta} \right)$$

• AD mechanism happens during the radiation-dominated era

$$H \sim \frac{T^2}{M_P} \Rightarrow T_{AD} \sim \sqrt{m_{\phi}M_P} \sim 10^{10} \text{ GeV}$$

$$\langle r \rangle \sim \sqrt{HM_P} \sim T \Rightarrow r(T_{AD}) \sim \sqrt{m_{\phi}M_P}$$

$$\dot{\theta} \sim m_{\theta}^2/H \sim \frac{1}{H} \frac{m_{\phi}}{M_P} \langle r^2 \rangle \sim m_{\phi}$$

$$Y_{\phi} = \frac{\bar{n}_{\phi}}{s} \sim \frac{r^2 \dot{\theta}}{g_* T^3} \sim \frac{1}{g_*} \sqrt{\frac{m_{\phi}}{M_P}} \sim 10^{-10}$$

r

Another difference

- ϕ cannot be MSSM flat directions
 - MSSM flat directions couple to SM with the SM Yukawa couplings
 - In RD, ϕ easily thermalizes with SM bath and develop the thermal potential ($\lambda T^2 r^2$), which spoils the AD mechanism
 - AD mechanism needs to happens during the early matter-domination
- We use the neutrino-portal: $y_{\nu}\ell hN + \frac{1}{2}\lambda_N\phi N^2$
 - $\circ \phi$ is a new degree of freedom
 - $\circ \phi$ was decoupled with the SM bath due to the small Yukawa coupling
 - Initial abundance is negligible and does not develop thermal potential
 - $\circ~\phi$ is thermalized with the SM bath through a right-handed neutrino N much later than the AD mechanism happens

Neutrino-Portal Affleck-Dine Mechanism

$$\mathcal{L} \supset \overline{N} i \overline{\sigma}^{\mu} \partial_{\mu} N - \left(y_{\nu} \ell h N + \frac{1}{2} \lambda_{N} \phi N N + h.c. \right)$$

- N is a right-handed neutrino with B L = 1
- ϕ carries B L = -2
- Global $U(1)_{B-L}$ only allows the seesaw operators
- $U(1)_{B-L}$ breaking terms arising from quantum gravity effects are suppressed by M_P
- Asymmetry of ϕ transfers to the lepton sector through N
- Asymmetry of the baryon sector is induced form the weak sphaleron process

Cosmological History

ASYMMETRY TRANSFER

Thermalization of N

$$\mathcal{L} \supset \overline{N} i \bar{\sigma}^{\mu} \partial_{\mu} N - \left(y_{\nu} \ell h N + \frac{1}{2} \lambda_{N} \phi N N + h.c. \right)$$

Besak and Bodeker, 1202.1288

• The production rate of N from the SM bath $\int_{(a)}^{N} \int_{(b)}^{(b)} \int_{(b)}^{(c)} \int_{(b)}^{(c)} \int_{(b)}^{(c)} \int_{(c)}^{(c)} \int_{(c)}^{(c)}$

• We need $T_{AD} > T_N > T_{sp} \Rightarrow$ weak scale $\langle \phi \rangle$ works well

Thermalizaion of ϕ and Asymmetry transfer

$$\mathcal{L} \supset \overline{N} i \bar{\sigma}^{\mu} \partial_{\mu} N - \left(y_{\nu} \ell h N + \frac{1}{2} \lambda_{N} \phi N N + h.c. \right)$$

- We assume $\lambda_N \sim \mathcal{O}(1)$
 - $\circ \phi$ thermalizes with the SM bath as soon as N thermalizes
 - Asymmetry of ϕ transfers to the lepton sector
- Asymmetry transfers to baryon sector through the weak sphaleron process

$$\mu_{\phi} = 2\mu_L = -2\mu_B$$

• After ϕ decays, the asymmetry of ϕ (B - L = -2) evenly distributed to leptons and baryons

 $Y_B = -Y_L = -Y_{\phi,\text{in}}$

• The sphaleron process ceases at $T_{\rm sp} \approx 132 \, {\rm GeV}$, and Y_B freezes out

LATE-TIME PHENOMENOLOGY

Cosmological History

Late-time Scalar Potential

$$\Delta V = \left(\lambda_N^2 |\phi|^2 - m_{\widetilde{N}}^2\right) \left|\widetilde{N}\right|^2 + \left(\frac{\alpha \lambda_N m_{\phi}}{2} \phi \widetilde{N}^2 + h.c.\right) + \frac{\lambda_N^2}{4} \left|\widetilde{N}\right|^4$$

• We have one more scalar in the model: \widetilde{N} (a superpartner of N)

Late-time Scalar Potential

$$\Delta V = \left(\lambda_N^2 |\phi|^2 - m_{\widetilde{N}}^2\right) \left|\widetilde{N}\right|^2 + \left(\frac{\alpha \lambda_N m_{\phi}}{2} \phi \widetilde{N}^2 + h.c.\right) + \frac{\lambda_N^2}{4} \left|\widetilde{N}\right|^4$$

- We have one more scalar in the model: \widetilde{N} (a superpartner of N)
- We assume \widetilde{N} also has a weak scale mass, but with a negative mass-squared
- In the early time $\langle \phi \rangle \gg m_{\widetilde{N}}$, \widetilde{N} is trapped at the origin
- Late-time when $\langle \phi \rangle$ drops below $m_{\widetilde{N}}$, scalar fields get vev, and $U(1)_{B-L}$ is spontaneously broken.

• Assuming
$$m_{\widetilde{N}} \sim m_{\phi}$$
, $\langle \phi \rangle \sim \frac{\alpha m_{\phi}}{\lambda_N}$ and $\langle \widetilde{N} \rangle \sim \frac{m_{\phi}}{\lambda_N}$

Majoron

• Majoron J is a pseudo-Nambu-Goldstone boson associated with $U(1)_{B-L}$

$$\mathcal{L}_{eff} = \frac{1}{2} \left(\partial_{\mu} J \right)^{2} - \frac{1}{2} m_{J}^{2} J^{2} - \frac{1}{2} \left(\frac{m_{\nu}}{f_{J}} J \nu \nu + h. c. \right)$$

$$m_{J} \sim f_{J} \sqrt{\frac{\alpha m_{\phi}}{M_{P}}} \sim O(0.1 - 1) \text{keV} \left(\frac{f_{J}}{100 \text{GeV}} \right) \qquad \forall (\phi)$$

$$f_{J} = \sqrt{4r_{\phi}^{2} + r_{N}^{2}} \sim m_{\phi}$$

$$\Gamma_{J}(J \rightarrow \nu \nu) = \frac{m_{J}}{16\pi f_{J}^{2}} \Sigma m_{\nu}^{2}$$
Both baryon asymmetry and m_{J}
come from the $U(1)_{B-L}$ breaking term
$$V_{J} \sim -\frac{\kappa \alpha m_{\phi}}{8M_{P}} r^{4} \cos 4\theta$$

come from the $U(1)_{B-L}$ breaking term

Majoron Contribution to ΔN_{eff}

- Majorons decouples with the SM bath at $T=T_d\sim 0.1~m_N$ Escudero and Witte, 2103.03249
- Depending on the decoupling time, $\Delta N_{\rm eff}$ contribution is

$$\Delta N_{\rm eff} = \frac{4}{7} \left(\frac{11}{4} \frac{g_{*,S}(T_0)}{g_{*,S}(T_d)} \right)^{4/3}$$

However, the Majoron can be non-relativistic before it decays. The energy density
of non-relativistic matter redshifts slowly, so

$$F_{\rm NR} \approx \frac{m_J}{T_{J,\rm decay}} \approx \left(\frac{g_{*,S}(T_0)}{g_{*,S}(T_d)}\right)^{-1/3} \frac{m_J}{T_{\rm decay}}$$
From $\Gamma_I = H$

should be included:

$$\Delta N_{\rm eff} = \frac{4}{7} \left(\frac{11}{4} \frac{g_{*,S}(T_0)}{g_{*,S}(T_d)} \right)^{4/3} \max[1, F_{\rm NR}]$$

ΔN_{eff} Constraints and future sensitivities

ΔN_{eff} Constraints and future sensitivities

$\Delta N_{\rm eff}$ Constraints and future sensitivities

DISCUSSION

Reheating Temperature $T_{\rm rh}$

- $T_{\rm rh}$ needs to be higher than T_{AD}
- But it cannot be much higher
- Constraints from isocurvature perturbations
- ϕ before AD has negative damping if there's a displacement from the fixed point
- We use $T_{\rm rh} \gtrsim T_{AD}$ to avoid these issues

Role of SUSY

- All the results I mentioned yield consistent results as long as we have the same scalar potentials
- SUSY is not necessary, but it's a good tool for organizing scalar potentials
 - e.g. ϕ has a flat direction naturally ($\lambda |\phi|^4$ term doesn't appear)
- With all the superpartners, we have another observable
 - The lightest neutrino should be very light : $m_{\text{light}} \sim \frac{m_N}{M_P} \sum m_V$
 - This explains the small neutrino mass sum from recent DESI data
 - We leave this for future work as it is model-dependent

Summary

• We propose a baryogenesis model where baryon asymmetry arises directly from a scale hierarchy between the weak scale and the Plank scale:

$$Y_B = \mathcal{O}(0.01) \sqrt{\frac{\nu}{M_P}}$$

- The model is based on Neutrino-Portal Affleck-Dine mechanism, where AD mechanism happens in RD
- The model predicts a relic Majoron with a keV mass and a weak scale decay constant
- This relic Majoron contributes to $\Delta N_{\rm eff}$ and the allowed parameter space agrees with the theoretical prediction
- All allowed parameter space can be probed by near-future CMB observations

THANKYOU

Scalar Potential

$$V = (m_{\phi}^2 - \kappa_H H^2) |\phi|^2 + \frac{\kappa^2}{M_P^2} |\phi|^6 - \alpha m_{\phi} \frac{\kappa}{4M_P} (\phi^4 + \phi^{*4})$$

- ϕ is a supersymmetric flat direction with a global U(1) symmetry
- U(1) is explicitly broken by the Planck suppressed operators in the superpotential

$$W = \frac{\kappa}{4M_P} \phi^4 , \qquad V = \left|\frac{\partial W}{\partial \phi}\right|^2 - \left(\alpha m_{\phi} W + h.c.\right)$$

The Hubble induced mass term comes from the Kähler potential,

$$\frac{\rho}{M_P^2} |\phi|^2 \quad \Rightarrow \quad \kappa_H H^2 |\phi|^2$$

More precisely

• The analytic expression for Y_{ϕ} can be calculated from the equation of motion of Y_{ϕ} ,

$$\frac{dY_{\phi}}{dt} = -\frac{1}{s}\frac{\partial V}{\partial \theta} = -\frac{1}{s}\frac{\kappa \alpha m_{\phi}}{2M_{P}}r^{4}\sin 4\theta$$

- To integrate the e.o.m over t analytically with some assumptions
 - $H > m_{\phi}$: $r(t) = \langle r \rangle = \left(\frac{4\kappa_H}{3\kappa^2}\right)^{1/4} \sqrt{HM_P}$ and $\theta(t) = \theta_{\text{in}}$
 - $H < m_{\phi}$: $r(t) = \langle r(t_*) \rangle a^{-3/2} \cos(m_{\phi}(t t_*))$ and $\theta(t) = \theta_{\text{in}}$ near maxima $(t_* \text{ is the time at } H = m_{\phi})$
- The final analytic result is

$$Y_{\phi} = -0.1\alpha \frac{\kappa_H}{\kappa} \sin 4\theta_{\rm in} \left(\frac{200}{g_*}\right)^{\frac{1}{4}} \sqrt{\frac{m_{\phi}}{M_P}}$$

• With $g_* = 200$ and $\mathcal{O}(0.1 - 1)$ coefficients, we get $Y_{\phi} \sim 10^{-10}$