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Clay, Kantaro, Seth, Sungwoo (2022-2024): 
Non-invertible Naturalness
A spurion for a non-invertible symmetry can be generated by instantons 
in a UV theory.

Find a Dirac natural origin 
for a technically natural 
parameter: 

yν ∼ yτ exp (−Sinst)

Find a Dirac natural origin 
for an unnatural parameter: 

  yb ∼ yt exp (−Sinst)
⇒ θ̄ ≃ 0

Infrared symmetry analysis points you to a Dirac natural model! More 
powerful than learning a UV model need not be destabilized toward the IR

Dirac (1938) Naturalness  ’t Hooft (1980) Technical Naturalness → →
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Why generalized global symmetries?

0-form symmetry 
charged local 
operators  
e.g. particles 

𝜕𝜇𝐽𝜇 = 0

1-form  
line operators  
e.g. Wilson line 

2-form  
surface operators  
e.g. cosmic string

3-form  
volume operators  
e.g. domain wall

𝜕𝜇𝐽𝜇𝜈 = 0 Generally  antisymmetric𝜕𝜇𝐽𝜇1𝜇2…𝜇𝑝+1 = 0

Break by adding charged operator 
to Lagrangian e.g. δℒ = MNN

Break only with the appearance of new dynamical 
degrees of freedom!



Generalized Global Symmetry of Electromagnetism

Recall Gauss’ law: The Gaussian surface is topological and so computes an invariant charge.
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Generalized Global Symmetry of Electromagnetism

Recall Gauss’ law: The Gaussian surface is topological and so computes an invariant charge.

In pure electromagnetism, the photon field strength is conserved  

Gauss’ law computes a Noether charge for an electric 1-form symmetry!

Jμν
E ∼ 1

e2 Fμν, ∂μJμν
E = 0

t = 0
q

d ⃗AΣ2

q = ∫Σ2

⃗E ⋅ d ⃗A

t = 0

Σ2

Wq(γ) = eiq ∫γ A

q = ∫Σ2

εμνρσFμνdSρσ



Emergent 1-form symmetry
The 1-form symmetry is emergent in the low-energy, long-distance theory .E ≪ me

Once we see the dynamical 
electron, then Wilson lines can ‘end’.

t = 0

Σ2
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Emergent 1-form symmetry

That is, Gauss’ law really breaks for  because the 
Gaussian surface is no longer topological. 

E > me

The 1-form symmetry is emergent in the low-energy, long-distance theory .E ≪ me

Once we see the dynamical 
electron, then Wilson lines can ‘end’.

Mutatis mutandis a magnetic one-form symmetry for a 
theory  with ’t Hooft lines classified by H π1(H)

t = 0

Σ2

ψ(x)

ψ(y)
Wq(γ; x, y)

Or does a discrete 
1-form symmetry 

remain? Test at LHC! 
SK & A. Martin
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Quick review: Instantons and Anomalies
Good classical zero-form global symmetry  can be anomalous in quantum 

theory with  gauge group 

        

U(1)X
G

∂μJμ
X = 0 ⟶ ∂μJμ

X = 𝒜X

8π2 FμνF̃μν

What field configurations can ‘saturate’ this anomaly and actually violate ? 

 = number of times  ‘winds’ around infinity

U(1)X

∫ℝ4
FμνF̃μν ∝ ∫∂ℝ4≃S3

̂nμJμ
CS Aμ

Multiplicity of  legs given by Dirac index ψi Iψi

Violates anomalous  by U(1)X 𝒜X = ∑
ψi

qψi
Iψi

Instantons lead to effective operators 
known as ’t Hooft vertices which 
violate -anomalous symmetriesG
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Unsaturated Anomalies - Missing Instantons

We said instantons are the field configurations which can saturate the anomaly 

 

But what about when they don’t? 

E.g. famously  and there are no Abelian instantons in , so 

∂μJμ
X = 𝒜

8π2 FμνF̃μν

π3 (U(1)) = 1 ℝ4 ∫ℝ4
FF̃ = 0

Old lesson:  is anomalous but -matrix preserves  anywayX S X
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A confused effective 
field theorist

EFT philosophy: If there is ever a zero, there should be a symmetry!

Somehow despite  being anomalous there must 
remain a subtle sort of symmetry that demands the 

-matrix preserves 

X

S X

A hint:  can be violated 
around magnetic monopoles 

X

c.f. Callan-Rubakov

Dirac ’31 
Callan, Rubakov ‘80s 

Ongoing…



There’s a subtler notion of symmetry!

Another victory for 
naturalness

 not fully broken, but converted to a 
non-invertible symmetry! This must act 
both on local fields and on ’t Hooft lines.

X

ψ(x) → ψ(x)eiα ei∮γ Am → ei∮γ Am+iα∮γ A

Choi, Lam, Shao 
2205.05086   

Córdova, Ohmori 
2205.06243 



There’s a subtler notion of symmetry!

Another victory for 
naturalness

 not fully broken, but converted to a 
non-invertible symmetry! This must act 
both on local fields and on ’t Hooft lines.

X

ψ(x) → ψ(x)eiα ei∮γ Am → ei∮γ Am+iα∮γ A

Non-invertible symmetry must break when 
there are dynamical monopoles that break 
the magnetic one-form symmetry

Choi, Lam, Shao 
2205.05086   

Córdova, Ohmori 
2205.06243 



Model-building strategy 

v

H

G

E ∼ 1/ρ

A classical global symmetry  protects some 
operator  and has an  anomaly 

X
𝒪 H

∂μJμ
X = 𝒜

8π2 HμνH̃μν

But some values of  not realized for , so  is 

not violated in -matrix of the  theory 

∫ℳ
HH̃ ℳ = ℝ4 X

S H

Non-invertible  symmetry tells us  could be generated by 
instantons in the theory  which has -monopoles

X 𝒪
G ⊃ H G/H



The Standard Model

• Beautiful, yet incomplete.  

• Simple way to go beyond is to gauge some of the 
approximate symmetries of the SM 

• E.g. the SU(5) approximate symmetry is broken by 
 (and ) 

• Here we’ll play with the  approximate 
symmetries of the SM fermions

g1 ≠ g2 ≠ g3 yu ≠ yd ≠ ye

U(3)5 SM flavor 
symmetries 

actually in 2-group 
Córdova & SK ’23 
Annalen der Physik



Nonperturbative Quantum 
Lepton Flavodynamics

Neutrino Masses from Generalized Symmetry Breaking 
arXiv:2211.07639, Clay Córdova, Sungwoo Hong, SK, Kantaro Ohmori



Now let’s go beyond and gauge U(1)Lμ−Lτ

There’s a new ABJ anomaly diagram to consider 

𝑈(1)𝐿𝜇−𝐿𝜏
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= − 1

global 
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Now let’s go beyond and gauge U(1)Lμ−Lτ

There’s a new ABJ anomaly diagram to consider 

𝑈(1)𝐿𝜇−𝐿𝜏

𝑈(1)𝐿𝜇−𝐿𝜏
= − 1

So the global  current is no longer conserved𝑈(1)𝐿𝑒−𝐿𝜇

 ∂μJμ
Le−Lμ

= −1
8π2 FLμ−Lτ

F̃Lμ−Lτ

But the  gauge theory cannot saturate this anomaly U(1)Lμ−Lτ

Non-in
vertib

le 

symmetry
!

global 
𝑈(1)𝐿𝑒−𝐿𝜇



Beyond with 𝑍′ 𝐿𝜇−𝐿𝜏
𝑈(1)𝐿𝜇−𝐿𝜏

𝑈(1)𝐿𝜇−𝐿𝜏
= − 1

Non-invertible symmetry protects neutrino masses, focus on ℤL
3 ⊂ U(1)Le−Lμ

𝑈(1)𝐿𝑒−𝐿𝜇

Disallows ( ~𝐻𝐿)
2

L = (Le − Lμ) − (Lμ − Lτ) (mod 3)



Model-building strategy

v

H

G

E ∼ 1/ρ

A classical global symmetry  protects the operators 

  and has an  anomaly 

X = ℤL
3

𝒪ij = (H̃Li)(H̃Lj) H = U(1)Lμ−Lτ

But while  generally,  ∫ℳ
HH̃ ∈ ℤ ∫ℝ4

HH̃ = 0

 is a non-invertible symmetry!  
In a theory  with lepton flavor monopoles,  could be 

classically absent and generated only by -instantons. 

X
G ⊃ H 𝒪ij

G



Beyond with  and !𝑍′ 𝐿𝜇−𝐿𝜏
N

𝑈(1)𝐿𝜇−𝐿𝜏

𝑈(1)𝐿𝜇−𝐿𝜏
≠ 0

Non-invertible symmetry protects neutrino masses 
either with or without right-handed neutrinos

Disallows ( ~𝐻𝐿)
2

Disallows 
~𝐻𝐿𝑁
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ℒ ∼ y⋆
τ e

− 8π2
g2
H H̃LN

Dirac masses: 
 

 

ℒ ∼ yτHLē

Classical  symmetry 

protects the Dirac neutrino 

mass 

U(1)N

H̃LN

Far UV: Write charged lepton yukawas



Economical and predictive
Given the discovery of such a  for , learn the scale 

at which  

𝑍′ 𝑈(1)𝐿𝜇−𝐿𝜏

𝑆𝑈(3)𝐻 → 𝑈(1)𝐿𝜇−𝐿𝜏
𝑣Φ (TeV)

𝛼−1
𝜇𝜏 (1 TeV)

Texture from Higgses implementing   𝑆𝑈(3)𝐻 → 𝑈(1)𝐿𝜇−𝐿𝜏
→ Ø

c.f. [Alonso-Álvarez, Cline ‘21]



Nonperturbative Quantum 
Quark Flavodynamics

Non-InverVble Peccei-Quinn Symmetry and the 
Massless Quark SoluVon to the Strong CP Problem 
arXiv:2402.12453, Clay Córdova, Sungwoo Hong, SK



Quark Weak CP and Strong CP Violation

J̃ = Im det ([y†
uyu, y†

d yd])Even worse, we also have the ‘weak CP angle’

oft parameterized by and the phase mi, θij, δCKM ∼ 1.14

The ‘strong CP angle’ is constrained to  !θ̄ ≲ 10−10

A small value of  is not technically natural  the strong CP problem. 
  
Upon RG evolution,

θ̄ ⇒

θ̄ = arg e−iθ det (yuyd)

δθ̄ ∝ cδCKM Ellis & Gaillard ‘79



Peccei-Quinn for Strong CP
Now consider a Peccei-Quinn symmetry protecting the up quark mass

U(1)PQ : ū → ūeiα ⇒ H̃Qū charged so yu = 0

If the PQ symmetry is good, , and so  and there’s no 
strong CP violation

yu → 0 det yu → 0



Peccei-Quinn for Strong CP
Now consider a Peccei-Quinn symmetry protecting the up quark mass

U(1)PQ : ū → ūeiα ⇒ H̃Qū charged so yu = 0

If the PQ symmetry is good, , and so  and there’s no 
strong CP violation

yu → 0 det yu → 0

Easier to parameterize in ‘Cartesian coordinates’ 
for complex parameter M ∈ ℂ

Def , so  

Transforms as 

M = e−iθ det (yuyd) θ̄ = arg M
CP : Im(M) → − Im(M)



Peccei-Quinn Violation
Massless up quark?! Not in the IR.  
A PQ symmetry which begins good is 
violated by instantons at low energies  is Higgsed at G v

 is asymptotically free, G
α(Λ) → 0 Good   

up to 

U(1)PQ

e− 2π
α(Λ)

E

or  confines at  G ΛQCD

PQ violation 

∝ e− 2π
α(v)

Strongly coupled PQ violation

UV  is then violated by 
QCD instantons to generate 
mass, automatically 

yu = 0

M ∈ ℝ+
Georgi-McArthur ’81  
Kaplan-Manohar ’86 

Choi, Kim, Sze ‘88  



Peccei-Quinn Violation
Massless up quark?! Not in the IR.  
A PQ symmetry which begins good is 
violated by instantons at low energies  is Higgsed at G v

 is asymptotically free, G
α(Λ) → 0 Good   

up to 

U(1)PQ

e− 2π
α(Λ)

E

or  confines at  G ΛQCD

PQ violation 

∝ e− 2π
α(v)

Strongly coupled PQ violation

UV  is then violated by 
QCD instantons to generate 
mass, automatically 

yu = 0

M ∈ ℝ+
Georgi-McArthur ’81  
Kaplan-Manohar ’86 

Choi, Kim, Sze ‘88  

Flavour Lattice 
Averaging Group 2019

Heroic efforts by lattice physicists tell us the SM 
does not bear out the massless up quark solution

Could there be any UV model where instantons revive this solution?



Quark Flavor Z’

But in fact in the quark sector we can gauge flavored baryon number in a 
slightly more subtle way because ! Nc = 3 = Ng

In lepton sector we had anomaly-free  

Likewise here we can think about gauging e.g.   

Structurally parallel, just broken more by the larger Yukawas

U(1)Li−Lj

U(1)Bi−Bj



Quark Flavor Z’

Gauge group can be  where the quotient 

refers to identifying certain discrete transformations in either factor
(SU(3)C × U(1)B1+B2−2B3)/ℤ3

One such combination is  which is anomaly-free U(1)B1+B2−2B3

These non-trivial possibilities modify the 
topological data in a crucial way 



Quark Flavor Z’

Gauge group can be  where the quotient 

refers to identifying certain discrete transformations in either factor
(SU(3)C × U(1)B1+B2−2B3)/ℤ3

One such combination is  which is anomaly-free U(1)B1+B2−2B3

These non-trivial possibilities modify the 
topological data in a crucial way 

At intermediate scales you can realize 

 along similar lines (SU(3)C × SU(3)H)/ℤ3



Non-invertible symmetry
With the  global structure, there are color and flavor instantons with 
fractional instanton numbers

ℤ3

 is a spurion for this non-invertible symmetry!yd

E.g. fractional part of color instanton 𝒩C = 1
8π2 ∫M

Tr (FC ∧ FC) = 1
3 ∫M

ω ∧ ω mod 1

The diagonal quotient locks the fractional parts together 𝒩C = 𝒩H mod 1

Integer instanton -> broken, fractional -> non-inv 

 where 𝒜f = ∑
ψi

q f
ψi

Iψi
Iψi

= nψi
Tψi

𝒩C + nψi
Tψi

𝒩H

Non-invertible ℤ3



Model-building strategy

v

H

G

E ∼ 1/ρ

A classical global symmetry  protects the 

operators   and has an 

 anomaly 

X = ℤB̃+d
3

𝒪ij = HQid̄j

H = (SU(3)C × SU(3)H)/ℤ3

But while  generally,  ∫ℳ
HH̃ ∈ ℤ/3 ∫ℝ4

HH̃ ∈ ℤ

 is a non-invertible symmetry! 
In a theory  with quark color-flavor monopoles,  could 

be classically absent and generated only by -instantons 

X
G ⊃ H 𝒪ij

G



Color-flavor unification!
This all points to a beautiful  unified theory in which the colors 
and flavors of the quarks are placed together into the fundamental

SU(9)

Again start with good  and no strong CP violation, thenU(1)PQ

ℒ0 = ytH̃Qū + h.c. + iθ9
32π2 FF̃



Color-flavor unification!
This all points to a beautiful  unified theory in which the colors 
and flavors of the quarks are placed together into the fundamental

SU(9)

Again start with good  and no strong CP violation, thenU(1)PQ

ℒ0 = ytH̃Qū + h.c. + iθ9
32π2 FF̃

SU(9)

Q

d̄
ū

Q
H

ℒ(Λ9) ∼ ytHQū + y⋆
t eiθ9e− 2π

α9(Λ9) HQd̄ +  h.c. + iθ9
32π2 FF̃



Generating CKM
Idea: Communicating flavor- and CP-breaking  
through gauged flavor symmetry lets you generate 

hermitian yukawas. Then 

⟨Σa
b⟩

θ̄ = arg det e−iθyuyd = 0
V(Σ) = η1Tr (Σ4) +  h.c. + …

(yu)a
b ∼ yt (𝕀a

b + α9
(4π)

η†
1(Σ†4)a

b

Λ4
9

+ α9
(4π)

η1(Σ4)a
b

Λ4
9

+ …)

𝐸
SU(9)

(SU(3)C × SU(3)H)/ℤ3

SU(3)C

⟨ΦABC⟩

⟨Σa
b⟩



Generating CKM
Another wrinkle: Want to generate 

δCKM ∝ arg det ([y†
uyu, y†

d yd]) ≠ 0

Must treat  differently so they don’t commute in 
flavor space.

ū, d̄

Add states with ‘downphilic’ 
interactions e.g.  a scalar 

fundamental,  a singlet fermion

ρ
χ

(yd)a
b + = |λd |2

(4π)2 (aΣa
b + a†Σ†a

b )

𝐸
SU(9)

(SU(3)C × SU(3)H)/ℤ3

SU(3)C

⟨ΦABC⟩

⟨Σa
b⟩
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Seth’s Conclusions

At least any place nonperturbative effects might 
be phenomenologically relevant, I expect 
paradigm of generalized global symmetries will 
offer better understanding

Already we have located new unified theories 
of the SM fermions with instanton effects 
which can solve SM naturalness issues! Both 
technically natural, and not.

A primate pleased they 
newly uncovered some 
simple, reductionist          
BSM models 

As particle physicists we are not yet done 
learning about the role of symmetries!



Backup slides

Rants and other things I didn’t have time for



Wrong conclusion

• Incorrect takeaway: “They used these fancy new symmetry ideas but 
in the end the UV model could be explained in terms of instantons. 
We’ve known about that stuff since the 80s. So who cares about 
generalized symmetries?” 

• Correct takeaway: “These intriguing instanton effects have been sitting 
this close to the SM for decades and nobody saw it?! What can 
generalized symmetries tell me about my favorite BSM model??



Massless quark wins on quality
Both axion and massless quark solutions rely on good quality Peccei-
Quinn symmetries, but only the former has a quality ‘problem’ because 
its required quality is ridiculously unnatural

Worse issue for the axion because  

• With PQ-charged scalar  can have all sorts of PQ-violating ops e.g.  

• We have strong astrophysical bounds on  

• The potential  cannot overpower 

ϕ ℒ ⊃ cnM4−n
Pl ϕn

⟨ϕ⟩ = fa ≳ 108 GeV

Vgrav ∼ f 4
a (fa /Mpl)

n−4
Vinst ∼ Λ4

QCD

Whereas we can sustain some extra additive contribution to  

as long as its magnitude is small, as  

 can have some random phase and  coupling as long as 

, implying . Quark flavor physics is not too far away!

M = e−iθ det (yuyd)
θ̄ ∼ Im(M)/Re(M)

ℒ ⊃ cΣH̃QΣd̄ /MPl O(1)
⟨Σ⟩/Mpl ≲ θ̄ ⟨Σ⟩ ≲ 108 GeV



ℒ0 = ytH̃Qū + h.c. + iθ9
32π2 FF̃

ℒ(Λ) ∼ ytHQū + y⋆
t eiθ9e− 2π

α9(Λ) HQd̄ +  h.c. + iθ9
32π2 FF̃

We begin in the far UV with a good U(1)PQ

And so of course  

We flow down in energies and begin to generate

M = e−iθ det (yuyd) = 0

𝐸

SU(9)

Λ9
(SU(3)C × SU(3)H)/ℤ3

Λ

With exactly the right phase to ensure  

θ̄ = arg e−iθ9 det yuyd = − θ9 + arg |yt |
2 eiθ9 = 0

Further at the matching scale

ℒ(Λ9) ∼ ytHQū + y⋆
t eiθ9e− 2π

3αs(Λ9) HQd̄ +  h.c. + i3θ9
32π2 (GG̃ + KK̃)

And the matching accounts for the yukawas now being 3x3 matrices

θ̄ = − 3θ9 + arg det |yt |
2 eiθ9 = 0

Strong CP in more detail



Need a better estimate of instanton effects
 is not so small that we can ignore the polynomial prefactoryb /yt ∼ 1/40

SU(9)

Q

d̄
ū

Q
H ∼ ∫1−inst

𝒟A𝒟ϕi𝒟ψi HQd̄ e−Sgauge− ∫ ℒint

Thankfully ’t Hooft taught us how to do this in 
1976. Must integrate over all the zero-modes 
of the 1-inst solution.

Aμ(x) = 2
g

ρ2

(x − x0)2

ηaμν(x − x0)νJa

(x − x0)2 + ρ2

As well as quadratic fluctuations for any 
charged scalar fields, and solve for the 
charged fermion zero-modes 0.1 0.2 0.5 1

�9 (�9)
10-11

10-9

10-7

10-5

0.001

0.100

yb/yt
Only SM Fields w/Gauged SU(9)



Run, run, run 𝐸
SU(9)

Λ9

Λ3
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With the many gluons of  the UV theory is easily asymptotically free 

But strong coupling must grow in intermediate phase 

Can be easily achieved if some of the colored scalars get masses a bit below 

SU(9)

Λ9

β3 = ( 11
3 Nc − 4

3 nf If − 1
3 nsIs − 1

6 nrIr)



Color-flavor embedding

This ‘special embedding’  has a non-trivial ‘index 

of embedding’: the fundamental  branches to the  so the Dynkin index 
changes non-trivially  

SU(9) → (SU(3)C × SU(3)H)/ℤ3
9 (3,3)

k = μIR /μUV = 3
See Csaki, Murayama ’98 for good discussion

So the  theory has ‘extra’ instantons that the IR theory does not: a fermion 

has  times as many zero-modes in the  instanton background, so we 

must interpret this as a 3-instanton of the  theory

SU(9)
k = 3 SU(3)C

SU(9)

Matching the instanton actions implies a non-trivial matching of the gauge coupling 

across , as , so Λ9 e− 8π2
αIR = e−k 8π2

αUV α9(Λ9) = 3αC(Λ9)



Abelian Z’ also promising

In the case of  the new gauge 
boson (and new non-invertible symmetry) can 
observationally appear much sooner 

And furthermore maybe don’t need as large Higgs 
representations to do breaking, so less suppression of 
instanton density 

But need to more clearly understand generating flavor 
texture in this scheme

(SU(3)C × U(1)H)/ℤ3

𝐸
SU(9)

Λ9

Λ1

(SU(3)C × U(1)H)/ℤ3

SU(3)C



Turn on general allowed magnetic fluxes (background 2-form fields for 
the magnetic 1-form symmetry) and calculate instanton numbers 

See Anber, Hong, Son 2109.03245 

Fractional instanton analysis on S2 × S2

 Qc = Nc − 1
Nc ∫M4=M2×Σ2

w2 ∧ w2
2 = Nc − 1

Nc ∮M2

w2 ∮Σ2

w2 = m1m2 (1 − 1
Nc )

 QH = 1
8π2 ∫ H2 ∧ H2 = s1s2

Then compute Dirac indices of fermions 

Iψi
= nψi

Tψi
Qc + dimψinψi

q2
ψi

QH

And find anomaly coefficients for each  U(1)global[CH]2



Why multiple generations?

One sort of answer from physics effects you can only get with multiple generations 

• CP violation in CKM would have been a great answer if this were responsible for 
electroweak baryogenesis, but alas. 

• SM has anomaly-free  so proton not destabilized for  but lifetime very 

long anyway.

ℤB+L
2Ng

Ng > 1

To me this question motivates thinking about BSM effects you can have only 
because , and especially interesting things that can happen for  Ng > 1 Ng = 3

Related forthcoming SK & S. Homiller: Only for  can one write a 

Totally Anti-Symmetric Triplet Yukawa (TASTY) model of flavor: 

Ng = 3
ytϵijkHiQ jūk

Kuzmin, Rubakov, Shaposhnikov ’85

Explained in SK ’22 



Why multiple generations?

Anomaly cancellation in ultraviolet embeddings of the SM? 

• In 6d, ‘global’  anomaly (Kiritsis ’86 following Witten ’82) requires multiple 
generations (Dobrescu & Poppitz ’01) 

• This is not true! Global anomalies actually not classified by homotopy groups  
but by bordism as we have gradually understood is captured by the Atiyah-Patodi-
Singer -invariant (summarized in Witten & Yonekura, ’19) and in particular there is 
no 6d SU(2) anomaly (Mannier & Moore, ’18; Davighi & Lohitsiri ’20; Lee & 
Tachikawa ’20) 

• Electroweak  embedding can have anomalies cancel across three non-
universal generations (Singer, Valle, Schechter ’80, emphasized in ’92 by Foot, 
Hernandez, Pisano, Pleitez; Frampton) (but could also do universal embedding) 

SU(2)L

πn(G)

η

SU(3)L × U(1)N



Big idea: (B)SM physics with multiple generations 
differs even in the flavor-singlet sector

Is the proton stable in the Standard Model? Yes, 

there is an exact anomaly-free  symmetry.ℤB+L
2Ng

SK 2204.01741

Maybe eventually some things to say about the big 
question of why we have multiple generations?

Remarkably this can be extended flavorfully and 
embedded in the gauge symmetry of 
SU(12) × SU(2)L × SU(2)R

Davighi, Greljo, 
Thomsen 

2202.05275

Mixed anomalies gauge^2 x global of SM

Related forthcoming SK & S. Homiller: Only for  

can one write a Totally Anti-Symmetric Triplet Yukawa 

(TASTY) model of flavor: 

Ng = 3

ytϵijkHiQ jūk



The Standard Model

What are its generalized global symmetries?



Zero-form symmetries:

ℒ = yij
u H̃Qiūj + yij

d HQid̄j + yij
e HLiēj

Start with large classical flavor symmetry (U(Ng)(0))
5

Left-over classical  broken by electroweak instantons 

This last factor, since we have , is responsible for SM proton stability

U(1)B × U(1)L → U(1)B−L × ℤL
Ng

Ng > 1 SK ’22; Wang, 
Wan, You ‘22

The SM with massless neutrinos has exact  but we 

know from oscillations that these are not symmetries of the real world

U(1)Lμ−Lτ
× U(1)Le−Lμ



An aside on SM one-form symmetries

Hypercharge magnetic one-form symmetry:  

Electric one-form symmetry? We don’t know!  

U(1)(1)
m See D. Tong ‘17

γ

W = TrRei ∫γ A

See also recent discussion in axion 
theories by Reece; Choi, Forslund, 
Lam, Shao; Cordova, Hong, Wang

Global structure, fractionally-
charged particles, and SMEFT  
SK & A. Martin coming

Certain center transformations do not act on any of the SM fields, e.g. 

consider  under which  ℤ2 ⊂ SU(2)L × U(1)Y ψ ↦ ψ ((−1)IL) eπiY

So the global structure of the SM gauge group is 

 with q=1,2,3,6 

Which has electric one-form symmetry 

GSMq
≡ (SU(3)C × SU(2)L × U(1)Y)/ℤq

ℤ(1)
6/q



Approximate higher structure:

The non-abelian parts  are intertwined with the magnetic one-form 

symmetry  in the form of a 2-group 

SU(3)5

U(1)(1)
m

Zero-form symmetries so intertwined must be broken by the scale of magnetic one-form 
symmetry breaking, which (at zero yukawa) tells you the possible unified multiplets

Finite yukawas are ‘spurions’ of 2-group symmetry-breaking and 
can perturb away from this structure if they control the mass of 
some vector-like fermions

Córdova & SK ’22



Non-invertible symmetries:

Approximate  is non-invertible due to a mixed anomaly 

with hypercharge,  

No BSM model-building use yet, but Shao, Lam, Choi ’22 use this 

for a ‘symmetry-based’ derivation of 

U(1)ū−d̄+ē

U(1)2
YU(1)ū−d̄+ē = 72Ng

π0 → γγ

 has a mixed gravitational anomaly without exactly  right-handed 

neutrinos, and Putrov, Wang ’23 showed this also leads to a non-invertible 
symmetry! Could be used for ‘gravitational leptogenesis’ Alexander, Peskin, 
Sheikh-Jabbari ’06.

U(1)B−L Ng

grav
U(1)B−L

U(1)ū−d̄+ē
U(1)Y



One further IR ‘ambiguity’

Given the SM matter content, it’s an empirical 
question whether  is actually a global 
symmetry or perhaps a weakly coupled gauge 
symmetry 

A  subgroup may be gauged and unbroken: 
this “B-L BF theory” is an extension of the SM 
with 0 new dof 

Comes with magnetic two-form symmetry 

U(1)B−L

ℤN

ℤ(2)
N

Eöt-Wash ‘12

Remarkably little work on this. I suggested 
for  these cosmic strings could 

resolve the cosmological lithium problem.

N = 2Ng


