ATLAS Software and Computing and its evolution towards High-Luminosity LHC

Second PMBC'2023 Workshop
7 November 2023

Dario Barberis
CERN and University/INFN Genoa (Italy)

on behalf of the ATLAS S&C activity
The ATLAS Collaboration

ATLAS Collaboration

181 institutions (247 institutes) from 42 countries
The ATLAS Collaboration

ATLAS Collaboration
181 institutions (247 institutes) from 42 countries
The ATLAS Collaboration

ATLAS Collaboration
181 institutions (247 institutes) from 42 countries

ATLAS Collaboration member nationalities
Over 5900 members of 163 nationalities
The ATLAS detector now

Phase-I upgrade

- New LAr L1 trigger
- Muons: New Small Wheels
- New software: Athena Multi-Threaded
The ATLAS detector in HL-LHC

Phase-II upgrade

New Inner Tracking detector (ITk)

High Granularity Timing Detector (HGTGD)

New muon chambers (new RPC and sMDT)

Upgraded Trigger and Data Acquisition system
● We just finished the second year of Run 3
 ○ Run 3 will end in 2025
● HL-LHC will start in 2029
The Physics challenge: Run 3

Our “interesting” data set size is measured in fb\(^{-1}\)

- Trigger rate (incl. delayed) ~3.5 kHz
- RAW size ~1.3 MB/ev
- Pile-up ~60
- ~10B real events/year
- ~30B MC events/year
The Physics challenge: HL-LHC (Run 4)

Our “interesting” data set size is measured in fb\(^{-1}\):

- Trigger rate \(\sim 10\) kHz
- RAW size \(\sim 4\) MB/ev
- Pile-up \(\sim 140\)
- \(~50B\) real events/year
- \(~150B\) MC events/year
The Computing Challenges

- Needs in terms of CPU power, disk and tape storage grow exponentially
 - Model updated in 2023 — no significant change to these projections
- Need for major R&D (and/or budgetary) effort to achieve HL-LHC physics potential
 - We have defined **Conservative R&D** and **Aggressive R&D** scenarios
 - N.B.: some projects for which we were/are not able to estimate the concrete impact are not (yet) included (e.g. GPU usage, FastChain simulation)
 - The black lines indicate the “flat budget” of 10% (lower line) and 20% (upper line)
Getting There from Here

- **ATLAS S&C HL-LHC Roadmap**
- Defines milestones and deliverables to get to the HL-LHC successfully
- R&D is ongoing
 - We’ve just spent some time discussing and reviewing “demonstrator” prototype projects for the HL-LHC
 - We see already lot of engagement!
- Integration and validation will require **time**
 - Late arriving R&D is risky
- In 2025 we expect to have in the TDR a detailed path to HL-LHC data taking
 - For example, accelerators: Yes or No
 - This is also the timeline for a decision from our trigger group on accelerators
Attention Points (Processing / CPU)

● No single application dominates CPU in 2031
● That’s good news and bad news for us
 ○ No silver bullet to “solving” our resource crunch
 ○ Also not fatal if one workflow isn’t improved
 ○ Can diversify our R&D — lots of interesting projects!
● Lots of ideas around these problems
 ○ Ideas need to be supported by active effort
● Biggest (by some metric) “CPU” efforts currently in:
 ○ Faster simulation (Geant4 optimization / on GPU, better fast simulation, FastChain…)
 ○ ML/accelerator-based charged particle tracking
 ○ New approaches to analysis
● Effort spread around reasonably well
 ○ Other ML/accelerator approaches to reconstruction, event generation, etc
 ○ Cleaning up “waste” (e.g. unused / failed production)
Attention Points (Storage)

- Several ongoing disk efforts as well
 - RNTuple (of course)
 - Lossy compression: difficulty is not the infrastructure but the physics validation
 - Augmentation to support sparse additional data
 - Constant revision / review of file contents
 - Alternative compression/settings — delicate balance
 - More aggressive deletion / recreation

- Anticipating our PHYSLITE format will serve a wide variety of analyses in Run 4
 - The disk model is driven by “remnants”: how many analyses don’t use PHYSLITE, and what they use instead. This is where the hard work goes!

- Very successful model for data distribution
 - Our “data carousel” uses tape effectively as a warm storage medium, reducing disk needs
 - Already have a mechanism for replication of popular datasets, and expecting to continue this way
High-Performance Computing

- We have benefited enormously from HPC systems (especially since 2021)
High-Performance Computing

- We have benefited enormously from HPC systems (especially since 2021)
- Recently allowed us to cross 1M simultaneous cores for the first time
High-Performance Computing

- We have benefited enormously from HPC systems (especially since 2021)
- Recently allowed us to cross 1M simultaneous cores for the first time
- We have a mixture of “transparent” and “complex” HPCs today
 - Transparent: Mare Nostrum (ES), ND-T1 (NO/SE), Vega (SI), Karolina (CZ), CSCS (CH), (Leonardo (IT)), …
 - Complex: Cori/Perlmutter, Toubkal, …
HPC and Heterogeneity Philosophy

- We need more compute for the HL-LHC
- We need to keep our resources diverse
 - Expect HPCs to be an important component
- We do not need to run everywhere!!
 - Even a small HPC today could deliver a huge fraction of our required cycles
 - Vega is barely top 100 and is easily our #1 site — and we only use the CPU partition
 - This means we can find the most friendly HPC machines to use
- Corollary: we don’t need to run on all hardware
 - We are validating at scale ARM now (simulation and reconstruction already validated for physics) and have some GPU developments in the pipeline
 - It appears likely that ARM+CPU might already be sufficient for us
 - Portability languages will be key for us to port to other hardware
Some caveats: lots of “business as usual”

● **We have to keep on running the experiment while we are planning for major upgrades**
 ○ We are building a new ATLAS while we are running ATLAS
 ○ Failing is not an option

● **Lot of efforts that need to go into non-R&D work (or at the boundaries)**
 ○ Maintaining our current software - need to be able to process and analyse all existing data
 ○ Updates to database infrastructure
 ○ Improvements in metadata handling
 ○ Upgrade geometry and digitization
 ○ SW performance improvements
 ○ Re-tuning of Fast and G4 simulation for Run 4 new detector, and re-tuning reco
 ○ Distributed computing: lots of fundamental stuff, building blocks (tokens, OS, network, storage technologies)

● **R&D projects are on top of this:**
 ○ Balance (between R&D and “business as usual”) is key
 ○ And we need to have a strong focus on “impact”
Interesting & useful discussion of energy consumption during WLCG Workshop
 ○ Discussions dominated up to now by ATLAS members + sites

Happy to engage further on energy consumption, power, C02, etc

Various positive steps in terms of energy reduction
 ○ ATLAS full (Geant4) simulation fully validated on ARM (and now working on evgen+reco)
 ○ Clearly defined list of priorities for sites in case of power-shedding needs (switching off disk should be the last resort)
Summary

● ATLAS is facing interesting, difficult, but solvable software and computing challenges for the HL-LHC
 ○ One of the biggest challenges not mentioned here is supporting and retaining skilled developers

● Now is a great time for R&D, demonstrators, prototypes, and pilot projects!
 ○ From experience we know how long and painful integration in our frameworks and full physics validation are: we should take this into consideration to manage our expectations!

● Focusing our efforts on common, shared objectives is paramount
 ○ The way in which we work can make the difference between success and failure!
 ○ Fragmented efforts are lethal — and ineffective

● This was a “quick” overview of some of the challenges
 ○ Much more in our HL-LHC Roadmap, and we are happy to discuss further with anyone interested in contributing!
Thank you!
CERN Hardware cost