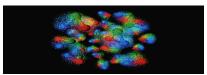
Nuclear PDFs after 10 years of LHC data¹

Michael Klasen

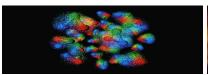
ITP, University of Münster

CTEQ Fall Meeting, MSU, November 9, 2023



¹MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Nuclear structure at high energies

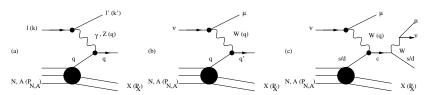


Important current research topic:

- Understand fundamental q, g dynamics of p, n bound in nuclei
- Determine initial conditions in creation of new state of matter:
 Color-glass condensate (CGC) → Quark-gluon plasma (QGP)

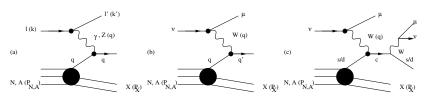
Nuclear structure at high energies

Important current research topic:

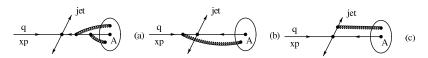

- Understand fundamental q, g dynamics of p, n bound in nuclei
- Determine initial conditions in creation of new state of matter:
 Color-glass condensate (CGC) → Quark-gluon plasma (QGP)

Knowns and (known) unknowns:

- Evolution of PDFs $f_{q,g}(x,Q^2)$ with squared energy Q^2 : Calculable at NLO and beyond through DGLAP equations
- Dependence on longitudinal momentum fraction x:
 QCD factorization theorem → global fits to experimental data
- Fundamental dynamics of nuclear modifications:
 Parameterized, but remain to be fully understood


ricy processes and open questions

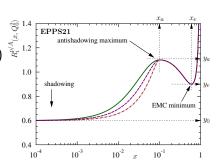
Deep-inelastic scattering (NC, CC, dimuon production):


Key processes and open questions

Deep-inelastic scattering (NC, CC, dimuon production):

Hadronic collisions: Leading twist, higher-twist

[J.w. Qiu, 0305161]


- Transv. size, jet mass, rescattering: $\mathcal{O}\left(r_T^2 \sim \frac{1}{p_T^2}, \frac{m_J^2}{p_T^2}, \frac{\alpha_s(Q^2)\Lambda^2}{Q^2}\right)$
- Enhanced in nuclear collisions by $A^{1/3}$

000

Nuclear modification factor

Definition:

$$f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2) f_i^p(x, Q)$$

Nuclear modification factor

Definition:

Introduction 00

$$f_i^{p/A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q)$$
Regions:

$$\begin{bmatrix} PPS21 \\ antishadowing maximum \\ 0.6 \end{bmatrix}$$

$$\begin{bmatrix} PPS21 \\ antishadowing maximum \\ 0.6 \end{bmatrix}$$

Regions:

- Shadowing: Surface nucleons absorb $q\bar{q}$ dipole, cast shadow
- Antishadowing: Imposed by momentum sum rule
- EMC effect: q_v suppression due to nuclear binding, pions, quark clusters, Nachtmann scaling, short-range correlations, ...
- Fermi motion: Nucleons move, $F_2^A = \int_x^A dz \, f_N(z) \, F_2^N(\frac{x}{z})$

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x,Q^2) = \sum_i f_i^{(A,Z)}(x,Q^2) \otimes C_{2,i}(x,Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A}f_i^{p/A}(x,Q^2) + \frac{A-Z}{A}f_i^{n/A}(x,Q^2)$$

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x,Q^2) = \sum_i f_i^{(A,Z)}(x,Q^2) \otimes C_{2,i}(x,Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A}f_i^{p/A}(x,Q^2) + \frac{A-Z}{A}f_i^{n/A}(x,Q^2)$$

DGLAP evolution equations:

$$\frac{\partial f_i(x,Q^2)}{\partial \log Q^2} = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z},\alpha_s(Q^2)\right) f_j(z,Q^2)$$

Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x,Q^2) = \sum_i f_i^{(A,Z)}(x,Q^2) \otimes C_{2,i}(x,Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A}f_i^{p/A}(x,Q^2) + \frac{A-Z}{A}f_i^{n/A}(x,Q^2)$$

DGLAP evolution equations:

$$\frac{\partial f_i(x,Q^2)}{\partial \log Q^2} = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z},\alpha_s(Q^2)\right) f_j(z,Q^2)$$

Sum rules, but also isospin symmetry:

$$f_{d,u}^{n/A}(x,Q^2) = f_{u,d}^{p/A}(x,Q^2)$$

Theoretical input and experimental data

	075045110	EDDOOL	NINDO EO O	7111104	1/010000
Analysis	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KSASG20
Theoretical input:					
Perturbative order	NLO	NLO	NLO	NNLO	NNLO
Heavy-quark scheme	$SACOT-\chi$	$SACOT-\chi$	FONLL	FONLL	FONLL
Data points	1484	2077	2188	2410	4353
Independent flavors	5	6	6	4	3
Free parameters	19	24	256	16	18
Error analysis	Hessian	Hessian	Monte Carlo	Hessian	Hessian
Tolerance	$\Delta \chi^2 = 35$	$\Delta \chi^2 = 33$	N/A	$\Delta \chi^2 = 50$	$\Delta \chi^2 = 20$
Proton PDF	\sim CTEQ6.1	CT18A	\sim NNPDF4.0	\sim HERAPDF2.0	CT18
Deuteron corrections	$(\checkmark)^{a,b}$	√ ^c	✓	✓	✓
Fixed-target data:					
SLAC/EMC/NMC NC DIS	✓	✓	✓	✓	✓
- Cut on Q ²	4 GeV ²	$1.69 \; \text{GeV}^2$	3.5 GeV ²	3.5 GeV ²	1.2 GeV^2
– Cut on W^2	12.25 GeV^2	3.24 GeV ²	12.5 GeV ²	12.0 GeV^2	
JLab NC DIS	(√) ^a	✓			✓
CHORUS/CDHSW CC DIS	(√/-) ^b	√/-	√/-	√/√	1/1
NuTeV/CCFR 2μ CC DIS	$(\checkmark/\checkmark)^b$		√/-		
pA DY	✓	✓	✓		✓
Collider data:					
Z bosons	✓	✓	\checkmark	✓	
W^\pm bosons	✓	✓	✓	✓	
Light hadrons	✓	\checkmark^d			
Jets		✓	✓		
Prompt photons			✓		
Prompt D ⁰	✓	✓	√ e		
Quarkonia $(J/\psi, \psi', \Upsilon)$	✓				

Required precision:

- ullet Protons: Wealth of HERA, LHC pp data ightarrow 1% accuracy, NNLO
- ullet Nuclei: Mostly FT, some LHC pA, no EIC ightarrow 10% accuracy, NLO ok

Required precision:

- ullet Protons: Wealth of HERA, LHC pp data ightarrow 1% accuracy, NNLO
- Nuclei: Mostly FT, some LHC pA, no EIC \rightarrow 10% accuracy, NLO ok

Available precision:

- Fast NNLO for DIS: APFEL(++), QCDNUM → xFitter
- Slow NNLO for pA: V (FEWZ, MCFM, Vrap, DYNNLO→Matrix), jets (NNLOjet), t (top++, Matrix) [, b (top++, Matrix)]
- Bottleneck: Grids (fastNLO, APPLgrid, PineAPPL \rightarrow Ploughshare)

Required precision:

- ullet Protons: Wealth of HERA, LHC pp data ightarrow 1% accuracy, NNLO
- Nuclei: Mostly FT, some LHC pA, no EIC \rightarrow 10% accuracy, NLO ok

Available precision:

- Fast NNLO for DIS: APFEL(++), QCDNUM → xFitter
- Slow NNLO for pA: V (FEWZ, MCFM, Vrap, DYNNLO→Matrix), jets (NNLOjet), t (top++, Matrix) [, b (top++, Matrix)]
- Bottleneck: Grids (fastNLO, APPLgrid, PineAPPL \rightarrow Ploughshare)

Open heavy quarks (important for pA):

- FFNS → FONLL
- VFNS ZM → GM (ACOT, RT)

Required precision:

- ullet Protons: Wealth of HERA, LHC pp data ightarrow 1% accuracy, NNLO
- Nuclei: Mostly FT, some LHC pA, no EIC ightarrow 10% accuracy, NLO ok

Available precision:

- Fast NNLO for DIS: APFEL(++), QCDNUM → xFitter
- Slow NNLO for pA: V (FEWZ, MCFM, Vrap, DYNNLO→Matrix), jets (NNLOjet), t (top++, Matrix) [, b (top++, Matrix)]
- Bottleneck: Grids (fastNLO, APPLgrid, PineAPPL → Ploughshare)

Open heavy quarks (important for pA):

- FFNS → FONLL
- VFNS ZM → GM (ACOT, RT)

Heavy quarkonia (important for pA):

- CEM [R. Vogt et al., PRC 105 (2022) 055202: J.P. Lansberg et al., PLB 807 (2020) 135559]
- NRQCD [K.T. Chao et al., JHEP 08 (2021) 111; M. Butenschön, B. Kniehl, PRL 130 (2023) 041901]

Compatibility of neutrino DIS data

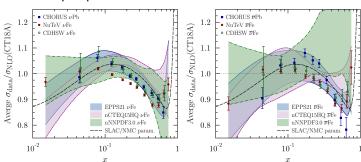
MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Are CC DIS data compatible with NC DIS and DY data?

- No (in particular high-precision NuTeV data)
 - [nCTEQ Coll., PRD 77 (2008) 054013, PRL 106 (2011) 122301, PRD 106 (2022) 074004; also prel. HKN]
- Yes (if taken without correlations, normalized)

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Compatibility of neutrino DIS data


MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

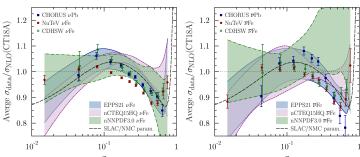
Are CC DIS data compatible with NC DIS and DY data?

- No (in particular high-precision NuTeV data)
 - [nCTEQ Coll., PRD 77 (2008) 054013, PRL 106 (2011) 122301, PRD 106 (2022) 074004; also prel. HKN]
- Yes (if taken without correlations, normalized)

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Consolidated perspective:

Compatibility of neutrino DIS data


MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Are CC DIS data compatible with NC DIS and DY data?

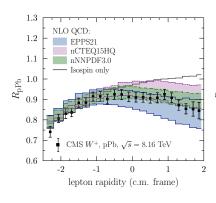
- No (in particular high-precision NuTeV data)
 - [nCTEQ Coll., PRD 77 (2008) 054013, PRL 106 (2011) 122301, PRD 106 (2022) 074004; also prel. HKN]
- Yes (if taken without correlations, normalized)

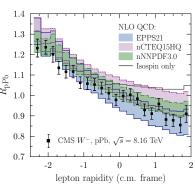

[H. Paukkunen, C.A. Salgado, JHEP 07 (2010) 032, PRL 110 (2013) 212301; also DSSZ]

Consolidated perspective:

NB: Proton is CT18A, EW corr. in CDHSW. Impact on s quark!

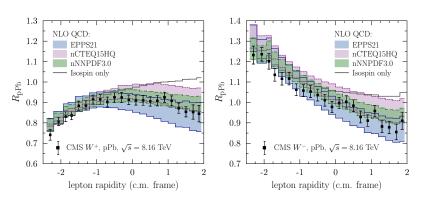
Kinematic coverage in x and Q^2


Experimental data on W/Z bosons

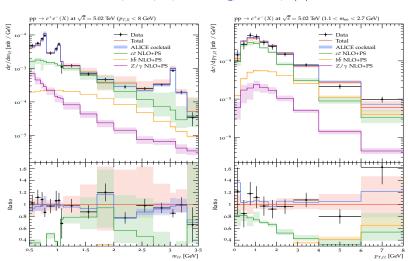

Analysis	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KP16
Run-I:					
ATLAS Z	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CMS Z	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ALICE Z			√ ^b		
LHCb Z	\checkmark		√b		
ATLAS W±	√				\checkmark
CMS W^\pm	\checkmark	\checkmark	\checkmark		
ALICE W^\pm	\checkmark		√b		
Run-II:					
CMS Z			√ ^b		
ALICE Z			√ ^b		
LHCb Z					
CMS W [±]	✓	√ ^a	✓	✓	
ALICE W [±]		,			

a added in EPPS21; b added in nNNPDF3.0.

Electroweak boson production in pPb with CMS


MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Electroweak boson production in pPb with CMS

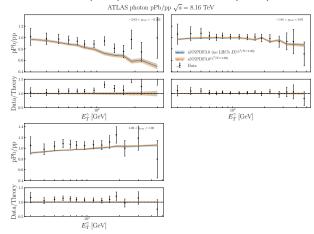

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

- nCTEQ/nNNPDF fit absolute cross sections, EPPS ratios
- Limited impact on s quark, since mostly evolved from gluon
- CMS Run-II NC in tension with NLO \rightarrow NNLO? (cf. TUJU21)

Virtual photon contribution in POWHEG

A. Andronic, T. Jezo, MK, C. Klein-Bösing, A. Neuwirth, in preparation

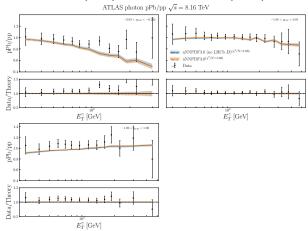
Isolated photons


ATLAS Coll., PLB 796 (2019) 230; nNNPDF Coll., EPJC 82 (2022) 507

Pre-LHC data: E706 (pBe); PHENIX, STAR (DAu)

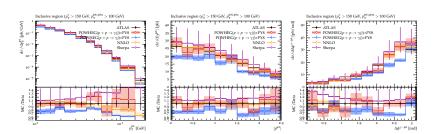
Isolated photons

ATLAS Coll., PLB 796 (2019) 230; nNNPDF Coll., EPJC 82 (2022) 507


Pre-LHC data: E706 (pBe); PHENIX, STAR (DAu)

Isolated photons

ATLAS Coll., PLB 796 (2019) 230; nNNPDF Coll., EPJC 82 (2022) 507


Pre-LHC data: E706 (pBe); PHENIX, STAR (DAu)

NB: Absolute cross sections underestimated at NLO \rightarrow NNLO?

Photon+jet production in pp with ATLAS

T. Jezo, MK, A. Neuwirth, in preparation

Single inclusive hadrons

P. Duwentäster, MK et al. [nCTEQ Coll.], PRD 104 (2021) 094005

(In-)sensitivity to fragmentation functions:

DSS unmodified data	DSS modified data	KKP	вкк	NNFF	JAM20
0.461	0.412	0.401	0.420	0.456	0.553

Single inclusive hadrons

P. Duwentäster, MK et al. [nCTEQ Coll.], PRD 104 (2021) 094005

(In-)sensitivity to fragmentation functions:

DSS unmodified data	DSS modified data	KKP	вкк	NNFF	JAM20
0.461	0.412	0.401	0.420	0.456	0.553

Impact of (RHIC+) LHC (ALICE) data:

	χ^2/N_{dof} for selected experiments and processes											
	ST	AR	PHENIX		AL	ICE		DIS	DY	WZ	SIH	Total
	π^0	π^{\pm}	π^0	$5 {\rm TeV} \pi^0$	$5 \mathrm{TeV}~\pi^{\pm}$	$5 \mathrm{TeV}~K^\pm$	$8 {\rm TeV} \pi^0$					
nCTEQ15	0.13	2.68	0.30	2.53	0.62	0.71	1.96	0.86	0.78	(3.74)	(1.23)	1.28
nCTEQ15SIH	0.16	0.69	0.41	0.48	0.13	0.29	0.58	0.87	0.72	(2.32)	0.38	1.00
nCTEQ15WZ	0.17	3.24	0.23	0.67	0.21	0.41	1.58	0.90	0.78	0.90	(0.81)	0.90
nCTEQ15WZ+SIH	0.14	0.75	0.30	0.47	0.13	0.26	0.79	0.91	0.77	1.02	0.41	0.85

Single inclusive hadrons

P. Duwentäster, MK et al. [nCTEQ Coll.], PRD 104 (2021) 094005

(In-)sensitivity to fragmentation functions:

DSS unmodified data	DSS modified data	KKP	вкк	NNFF	JAM20
0.461	0.412	0.401	0.420	0.456	0.553

Impact of (RHIC+) LHC (ALICE) data:

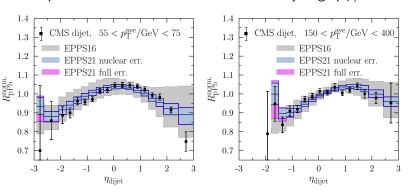
	χ^2/N_{dof} for selected experiments and processes											
	ST	AR	PHENIX		ALICE			DIS	DY	WZ	SIH	Total
	π^0	π^{\pm}	π^0	$5 \mathrm{TeV}~\pi^0$	$5 \mathrm{TeV}~\pi^{\pm}$	$5 \mathrm{TeV}~K^\pm$	$8 {\rm TeV} \pi^0$					
nCTEQ15	0.13	2.68	0.30	2.53	0.62	0.71	1.96	0.86	0.78	(3.74)	(1.23)	1.28
nCTEQ15SIH	0.16	0.69	0.41	0.48	0.13	0.29	0.58	0.87	0.72	(2.32)	0.38	1.00
nCTEQ15WZ	0.17	3.24	0.23	0.67	0.21	0.41	1.58	0.90	0.78	0.90	(0.81)	0.90
nCTEQ15WZ+SIH	0.14	0.75	0.30	0.47	0.13	0.26	0.79	0.91	0.77	1.02	0.41	0.85

Little impact of η data, also no FF uncertainty available.

Jets

CMS Coll., PRL 21 (2018) 062002; K. Eskola et al., EPJC 82 (2022) 413

Specific to nuclear collisions:

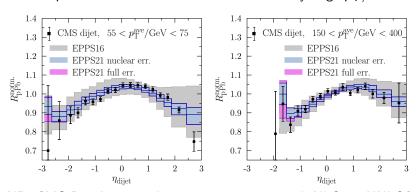

- Large background from Underlying Event
- 7 ± 5 pN interactions (Glauber) [Loizides, Kamin, d'Enterria, PRC 97 (2018) 054910]
- Requires subtraction of MPIs and sufficiently large p_T /small R

Jets

CMS Coll., PRL 21 (2018) 062002; K. Eskola et al., EPJC 82 (2022) 413

Specific to nuclear collisions:

- Large background from Underlying Event
- 7 ± 5 pN interactions (Glauber) [Loizides, Kamin, d'Enterria, PRC 97 (2018) 054910]
- Requires subtraction of MPIs and sufficiently large p_T /small R



Jets

CMS Coll., PRL 21 (2018) 062002; K. Eskola et al., EPJC 82 (2022) 413

Specific to nuclear collisions:

- Large background from Underlying Event
- 7 ± 5 pN interactions (Glauber) [Loizides, Kamin, d'Enterria, PRC 97 (2018) 054910]
- Requires subtraction of MPIs and sufficiently large p_T /small R

NB: CMS Run-I pp rapidity ratios in tension with NLO \rightarrow NNLO?

Methodology for heavy quark/quarkonium production

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Data-driven approach (Crystal Ball function):

$$\overline{\left|\mathcal{A}_{gg\rightarrow\mathcal{Q}+X}\right|^{2}} = \frac{\lambda^{2}\kappa\hat{s}}{M_{\mathcal{Q}}^{2}}e^{\mathbf{a}|\mathbf{y}|} \times \begin{cases} e^{-\kappa}\frac{\rho_{T}^{2}}{M_{\mathcal{Q}}^{2}} & \text{if } \rho_{T} \leq \langle \rho_{T} \rangle \\ e^{-\kappa}\frac{\langle \rho_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}} \left(1 + \frac{\kappa}{n}\frac{\rho_{T}^{2} - \langle \rho_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}}\right)^{-n} & \text{if } \rho_{T} > \langle \rho_{T} \rangle \end{cases}$$

- Originally proposed for J/Ψ pairs and double parton scattering [C.H. Kom, A. Kulesza, J. Stirling, PRL 107 (2011) 082002]
- Impact on nPDFs demonstrated with reweighting studies

 [A. Kusina, J.P. Lansberg, I. Schienbein, H.S. Shao, PRL 121 (2018) 052004 and PRD 104 (2021) 014010]
- New rapidity dependence allows to cover also LHCb data

Methodology for heavy quark/quarkonium production

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Data-driven approach (Crystal Ball function):

$$\overline{\left|\mathcal{A}_{gg\rightarrow\mathcal{Q}+X}\right|^{2}} = \frac{\lambda^{2}\kappa\hat{s}}{M_{\mathcal{Q}}^{2}}e^{\mathbf{a}|\mathbf{y}|} \times \begin{cases} e^{-\kappa}\frac{\rho_{T}^{2}}{M_{\mathcal{Q}}^{2}} & \text{if } \rho_{T} \leq \langle \rho_{T} \rangle \\ e^{-\kappa}\frac{\langle \rho_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}} \left(1 + \frac{\kappa}{n}\frac{\rho_{T}^{2} - \langle \rho_{T} \rangle^{2}}{M_{\mathcal{Q}}^{2}}\right)^{-n} & \text{if } \rho_{T} > \langle \rho_{T} \rangle \end{cases}$$

- Originally proposed for J/Ψ pairs and double parton scattering [C.H. Kom, A. Kulesza, J. Stirling, PRL 107 (2011) 082002]
- Impact on nPDFs demonstrated with reweighting studies
 [A. Kusina, J.P. Lansberg, I. Schienbein, H.S. Shao, PRL 121 (2018) 052004 and PRD 104 (2021) 014010]
- New rapidity dependence allows to cover also LHCb data

Choice of proton PDF (nCTEQ15) and factorization scales:

	D^0	J/ψ	$B \rightarrow J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$
μ_0^2	$4M_D^2 + p_{T,D}^2$	$M_{J/\psi}^2 + p_{T,J/\psi}^2$	$4M_B^2 + \frac{M_B^2}{M_{J/\psi}^2} p_{T,J/\psi}^2$	$M_{\Upsilon(1S)}^2 + p_{T,\Upsilon(1S)}^2$	$M_{\psi(2S)}^2 + p_{T,\psi(2S)}^2$	$4M_B^2 + \frac{M_B^2}{M_{\psi(2S)}^2} p_{T,\psi(2S)}^2$

Fit to pp data and validation with NLO predictions

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Crystal Ball fit parameters: Cut data with $p_T < 3$ GeV and |y| > 4

	D^0	J/ψ	$B \to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$	
κ	0.33457	0.47892	0.15488	0.94524	0.21589	0.45273	
λ	1.82596	0.30379	0.12137	0.06562	0.07528	0.13852	
$\langle p_T \rangle$	2.40097	5.29310	-7.65026	8.63780	8.98819	7.80526	
n	2.00076	2.17366	1.55538	1.93239	1.07203	1.64797	
a	-0.03295	0.02816	-0.08083	0.22389	-0.10614	0.06179	
$N_{ m points}$	34	501		375	55		
χ^2/N_{dof}	0.25	0.88		0.92	0.77		

Fit to pp data and validation with NLO predictions

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Crystal Ball fit parameters: Cut data with $p_T < 3$ GeV and |y| > 4

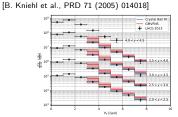
	D^0	J/ψ	$B \to J/\psi$	$\Upsilon(1S)$	$\psi(2S)$	$B \rightarrow \psi(2S)$	
κ	0.33457	0.47892	0.15488	0.94524	0.21589	0.45273	
λ	1.82596	0.30379	0.12137	0.06562	0.07528	0.13852	
$\langle p_T \rangle$	2.40097	5.29310	-7.65026	8.63780	8.98819	7.80526	
n	2.00076	2.17366	1.55538	1.93239	1.07203	1.64797	
a	-0.03295	0.02816	-0.08083	0.22389	-0.10614	0.06179	
$N_{ m points}$	34	501		375	55		
χ^2/N_{dof}	0.25	0.88		0.92	0.77		

Heavy quarkonia in NRQCD: Open heavy quarks in GM-VFNS:

[M. Butenschön, B. Kniehl, PRL 106 (2011) 022003]

Cystal Ball R
+ NRCCD

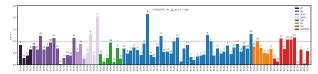
10


-201 + (-1.3)

10

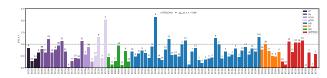
-1.37 + (-0.4)

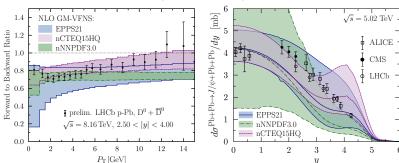
10


-4.46 \(\text{c} \text{ c} \) -2.7 ft.

Impact of heavy quark and quarkonium data

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]


Cut D^0 data with $p_T > 15$ GeV (no p), 2 high- p_T LHCb Υ points

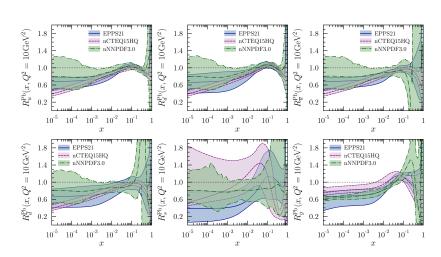

Impact of heavy quark and quarkonium data

P. Duwentäster, MK et al. [nCTEQ Coll.], Phys. Rev. D 105 (2022) 114043 [2204.09982]

Cut D^0 data with $p_T > 15$ GeV (no p), 2 high- p_T LHCb Υ points

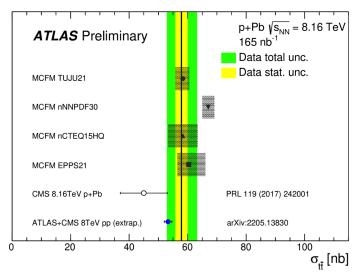
Comparison with incl. D^0 (LHCb Run-II) and excl. J/ψ data:

Heavy-quark and quarkonium data


MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

D^0	J/ψ	$\Upsilon(1S)$	$\psi(2S)$	B^0, B^{\pm}	c jet	b jet
	$(240, 241)^a$	$(241)^{a}$	$(241)^{a}$			
	(242)a	(243)	(244)a		(245)	(246)
$(247, 248, 249)^{a}$	(250, 251) ^a , (252)	(253)	$(254)^{a}$			(255)
$(256)^{a,b,c}$	$(257)^{a}$	(258)				
	(259)a, (260)	$(261)^{a}$	$(262)^{a}$			
(263)	$(264)^{a}$	$(265)^{a}$		(266)		
(267, 268)	(267, 269)		(269)			
	(247, 248, 249) ^a (256) ^{a,b,c} (263)	(240, 241) ^a (242) ^a (247, 248, 249) ^a (250, 251) ^a , (252) (256) ^{a,b,c} (257) ^a (259) ^a , (260) (263) (264) ^a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a included in nCTEQ15HQ (50); ^b included in EPPS21 (51); ^c included in nNNPDF3.0 (52).


Nuclear PDFs after 10 years of LHC data

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. (2024) [2311.00450]

Top pair production in pPb with ATLAS

ATLAS-CONF-2023-063

Nuclear PDFs:

- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

Nuclear PDFs:

- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

Recent developments in fixed-target experiments:

- NC DIS: JLab at high $x \to TMC$, HT, deuteron
- CC DIS: CHORUS (CDHSW, dimuon) ((CCFR/NuTeV))
- Neutrino data constrain in particular the strange quark

Nuclear PDFs:

- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

Recent developments in fixed-target experiments:

- NC DIS: JLab at high $x \to TMC$, HT, deuteron
- CC DIS: CHORUS (CDHSW, dimuon) ((CCFR/NuTeV))
- Neutrino data constrain in particular the strange quark

10 years of LHC data:

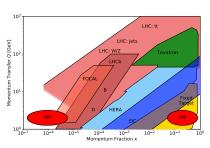
- Electroweak bosons → New data now included in nCTEQ
- Heavy quarks/quarkonia \rightarrow Gluon down to $x = 10^{-5}$
- Photons/light hadrons/jets → Need for NNLO?

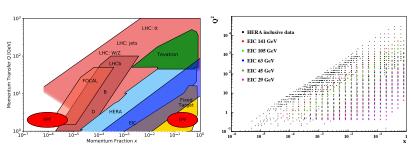
Nuclear PDFs:

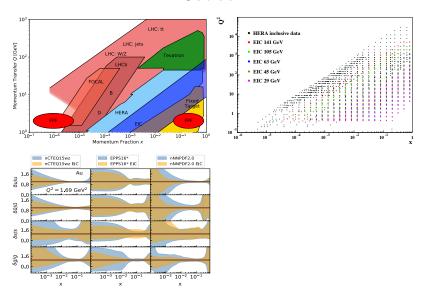
- QCD factorization, DGLAP evolution, HT enhancement
- Shadowing (LTA?), antishadowing, EMC effect, Fermi motion
- Dynamics: Partonic, hadronic, duality?
- Non-linear effects, initial-state phase transition to QGP

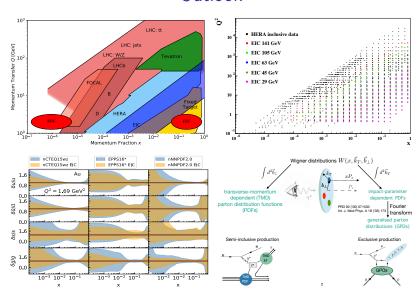
Recent developments in fixed-target experiments:

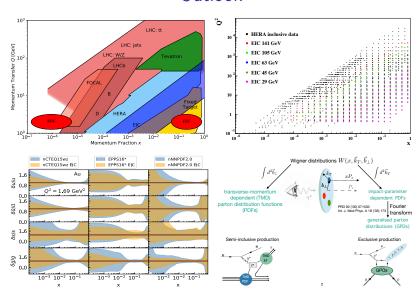
- NC DIS: JLab at high $x \to TMC$, HT, deuteron
- CC DIS: CHORUS (CDHSW, dimuon) ((CCFR/NuTeV))
- Neutrino data constrain in particular the strange quark


10 years of LHC data:


- Electroweak bosons → New data now included in nCTEQ
- Heavy quarks/quarkonia \rightarrow Gluon down to $x = 10^{-5}$
- Photons/light hadrons/jets → Need for NNLO?


Lattice QCD:


[LP3 Coll., NPLQCD Coll.]


• Large x, low A, m_{π} , quasi-/pseudo-PDFs etc., R_{u-d} , p_g/p_A

