The impact of ATLAS $t\bar{t}$ data on PDFs

Francesco Giuli (on behalf of the ATLAS Collaboration)

CTEQ workshop Michigan State University 09/11/2023

Why proton PDFs matter

- > Precise knowledge of Parton Distribution Functions (PDFs) is essential
- > PDFs have large uncertainties in the LHC kinematics regions
 - Significant source of uncertainty for Higgs and top production
 - > Limits precision on fundamental parameters (m_W , α_S , etc.)
 - Limits searches for new massive particles

Proton PDF studies within ATLAS

- Several PDF analyses performed by ATLAS in the past
- QCD analysis of 2011 W,Z & strange sea density <u>ATLASepWZ12 fit</u>
 First evidence for unsuppressed strange at small-x
- ➢ Fit to inclusive W,Z data at 7 TeV <u>ATLASepWZ16 fit</u>
 - > Confirmation of unsuppressed strange at small-x with high precision data
- Fit to inclusive W,Z (7 TeV) and top (8 TeV) data <u>ATLASepWZtop18 fit</u>
 - > Gluon constraints at medium- and high-x (both shape and uncertainties)
- Fit to inclusive W,Z (7 TeV) and V+jets (8 TeV) data <u>ATLASepWZVjets20 fit</u>
 Strange suppression at high-x and resolved ambiguities in high-x shapes
- Fit to several ATLAS data sets <u>ATLASpdf21 fit</u>
 - > It includes $t\bar{t}$ data at both 8 and 13 TeV

$t\bar{t}$ data at 8 TeV in the ATLAS PDF fit

- > To access the impact of including ATLAS $t\bar{t}$ production data in fits to extract the proton PDF
- > QCD fit to DIS data from HERA and W,Z at 7 TeV and $t\bar{t}$ at 8 TeV
- > $t\bar{t}$ data are complementary to the $W, Z/\gamma^*$ data
- > Expected to be sensitive to gluon distribution in the medium- and high-x regime (x $\ge 5 \cdot 10^{-2}$)
- > Important to perform this fit now since the NNLO predictions of pQCD for $t\bar{t}$ production data are now available and usable in PDF fits (<u>1704.08551</u>)

$t\bar{t}$ data at 8 TeV in the ATLAS PDF fit

- All the results publicly available <u>epWZtop18 fit</u>
- Available spectra for the fit:
 - > Lepton+jets channel $(m_{t\bar{t}}, p_T^t, y_{t\bar{t}}, y_t)$
 - > Dilepton channel $(m_{t\bar{t}}, y_{t\bar{t}})$
- ➢ Bin-to-bin statistical correlations within each spectrum and between the spectra (lepton+jets channel) available and included in the fit → effect is small but not negligible
- We have the systematic correlations between the spectra we would usually assume these to be 100% correlated
- > The largest systematic uncertainties are due to:
 - Initial state/final state radiation (ISR/FSR) ~8%
 - \succ Parton shower model (PS) ~5%
 - ➤ Hard-scattering model ~4%
- > Effect of decorrelating this source of uncertainty investigated

> Partial χ^2 good for $m_{t\bar{t}}$ and p_T^t but fits to $y_{t\bar{t}}$ and y_t are poor

Fits to individual lepton+jets $t\bar{t}$ spectra

> $y_{t\bar{t}}$ and y_t distributions pull the gluon PDF in a different direction wrt $m_{t\bar{t}}$ and p_T^t

Fits to various lepton+jets $t\bar{t}$ spectra

> Poor χ^2 of p_T^t , y_t consistent with separate χ^2 , whereas the poor χ^2 of p_T^t , $m_{t\bar{t}}$ is not consistent with their separate χ^2

9

Impact of the decorrelation

- Impact of decorrelating the systematic uncertainty due to PS
- > Resulting gluon PDF fully compatible wrt PS uncertainty fully correlated
- > The main effect of decorrelation is the reduction of the χ^2 value
- > We rejected the $y_{t\bar{t}}$ and y_t spectra because of the poor fit

> Now also global PDF fitters e.g. CT18, MSHT20 have done something similar

> MSHT decorrelated systematics across different bins of each $y_{t\bar{t}}$, y_t spectrum to get a good fit - and that actually made these spectra have very little effect

Fits to various dilepton $t\bar{t}$ spectra

> As for the lepton+jets spectra, the $m_{t\bar{t}}$ data support a harder gluon while the $y_{t\bar{t}}$ data prefer a softer gluon – **anyway both fits show good** χ^2

Fits to dilepton and lepton+jets spectra

Total χ^2/NDF		1253.8/1061
Partial χ^2/NDF	HERA	1149/1061
Partial χ^2/NDF	ATLAS $W, Z/\gamma^*$	78.9/55
Partial χ^2/NDF	ATLAS $m_{tar{t}}$ and p_T^t	16.0/15
Partial χ^2/NDF	ATLAS $y_{t\bar{t}}$	5.4/5

Harder gluon and a significantly reduced high-x uncertainty on the gluon PDF

Effect of the dilepton spectrum: change in the high-x shape but not further reduction in PDF uncertainties

Data description

13

The ATLASpdf21 fit

> ATLASpdf21 is a PDF fit to multiple ATLAS data sets - EPJC 82 (2022) 5, 438

- > DIS HERA data are the backbone of ATLAS PDF fits HERA data provide constraints over a very wide range of x and Q^2
- > LHC data provide additional constraints at medium and high-x and Q²
- > All the fits performed using <u>xFitter</u>
- Fit to NNLO in QCD and NLO in EW achieved either by direct NNLO grids or by k-factor corrections - current 'state of the art'

Data set	\sqrt{s} [TeV]	Luminosity [fb ⁻¹]	Decay channel	Observables entering the fit
Inclusive $W, Z/\gamma^*$ [9]	7	4.6	e, μ combined	η_l (W), y_Z (Z)
Inclusive Z/γ^* [13]	8	20.2	e, μ combined	$\cos \theta$ in bins of $y_{\ell\ell}, M_{\ell\ell}$
Inclusive W [12]	8	20.2	μ	η_{μ}
$W^{\pm} + jets [23]$	8	20.2	е	p_{T}^{W}
Z + jets [24]	8	20.2	е	$p_{\rm T}^{\rm jets}$ in bins of $ y_{\rm jets} $
$t\bar{t}$ [25, 26]	8	20.2	lepton + jets, dilepton	$m_{t\bar{t}}, p_{\mathrm{T}}^t, y_{t\bar{t}}$
tī [15]	13	36	lepton + jets	$m_{t\bar{t}}, p_{\mathrm{T}}^{t}, y_{t}, y_{t\bar{t}}$
Inclusive isolated γ [14]	8, 13	20.2, 3.2	-	$E_{\rm T}^{\gamma}$ in bins of η^{γ}
Inclusive jets [16–18]	7, 8, 13	4.5, 20.2, 3.2	-	$p_{\rm T}$ in bins of $ y_{\rm jets} $

Correlation between various data sets

Possible correlation between the ATLAS data sets carefully investigated

Systematic uncertainty	8 TeV W + jets	8 TeV Z + jets	8 TeV $t\bar{t}$ lepton + jets	13 TeV $t\bar{t}$ lepton + jets	8 TeV inclusive jets
Jet flavour response	JetScaleFlav2	Flavor Response	flavres-jes	JET29NP JET Flavour Response	syst JES Flavour Response*
Jet flavour composition	JetScaleFlav1Known	Flavor Comp	flavcomp-jes	JET29NP JET Flavour Composition	syst JES Flavour Comp
Jet punchthrough	JetScalepunchT	Punch Through	punch-jes	-	syst JES PunchThrough MC15
	JetScalePileup2	PU OffsetMu	pileoffmu-jes	-	syst JES Pileup MuOffset
let scale	-	PU Rho	pileoffrho-jes	JET29NP JET Pileup RhoTopology	syst JES Pileup Rho topology*
Jet seale	JetScalePileup1	PU OffsetNPV	pileoffnpv-jes	JET29NP JET Pileup OffsetNPV	syst JES Pileup NPVOffset
	-	PU PtTerm	pileoffpt-jes	JET29NP JET Pileup PtTerm	syst JES Pileup Pt term
Jet JVF selection	JetJVFcut	JVF	jetvxfrac	-	syst JES Zjets JVF
B-tagged jet scale	-	btag-jes	JET29NP JET BJES Response	-	-
Jet resolution	-	jeten-res	JET JER SINGLE NP	-	-
Muon scale	-	-	mup-scale	MUON SCALE	-
Muon resolution	-	-	muonms-res	MUON MS	-
Muon identification	-	-	muid-res	MUON ID	-
Diboson cross section	-	-	dibos-xsec	Diboson xsec	-
Z + jets cross section	-	-	zjet-xsec	Zjets xsec	-
Single-t cross section	-	-	singletop-xsec	st xsec	-

- > Entries in the same raw taken 100%-correlated for V+jets and $t\bar{t}$ +jets (R=0.4)
- > Different degrees of correlation are considered of the inclusive jet data (R=0.6), because of the differing choice of the jet radius wrt V+jets and $t\bar{t}$ +jets
- Exact degree of correlation to the inclusive jet data does not change the resulting PDFs

15

> The 13 TeV $t\bar{t}$ data (<u>1908.07305</u>) refer to partial Run 2 data set (2015 + 2016)

- Systematic uncertainties provided as full covariance matrices converted into nuisance parameters for all the spectra
- > Systematic correlations available **no need to do any decorrelation**
- > Bin-to-bin statistical correlations among all the 1D spectra also available and included in the fit <u>negligible impact on PDFs and χ^2 </u>

Data description

Dataset	Exp. χ^2 /dof
$+ m_{t\bar{t}}$	12.4/9
+ $p_T^{t,had}$	4.8/6
$+ y^{t,had}$	4.6/5
+ $y_{boost}^{t\bar{t}}$	9.3/9

- Top data at 13 TeV nicely included in the ATLASpdf21 fit
- Inclusion of each 1D spectrum one at a time → similar results and no deterioration of the χ²
- ➤ Inclusion of all the 1D spectra together → nice agreement with results from the previous step of the ATLASpdf21 fit

1D spectrum one at a time

Χ

xΣ(x,Q²)/xΣ(x,Q²)

Francesco Giuli - francesco.giuli@cern.ch

18

1D vs 2D

- > We studied the inclusion of the $\frac{d^2\sigma}{dm_{t\bar{t}}dp_T^{t,had}}$ cross sections and I compared it with the results obtained when including the 1D distributions $\frac{d\sigma}{dm_{t\bar{t}}}$, $\frac{d\sigma}{dp_T^{t,had}}$
- > Uncertainties not in form of full covariance matrix for the 2D distribution
- Identical results obtained when using 2D distribution or 1D spectra
- Size of uncertainties very similar
- Output parameters from the fits well consistent within uncertainties
- > No deterioration in χ^2 when including these data in the fit

- Predictions for a fit to some 1D spectra if using normalised or absolute distributions
- When including normalised cross sections, the last bin of the distribution is removed
- > Same results for $y^{t,had}$ and $y^{t\bar{t}}_{boost}$ (backup)

Impact of bin-to-bin statistical correlation

No sensible difference between PDFs or χ^2

Even smaller impact wrt the one found in the epWZtop18 fit

21

Impact of the top data on ATLASpdf21

- > We removed all the $t\bar{t}$ data from the fit
- These data marginally soften the high x gluon (blue to red) and reduce its uncertainties at high-x - 8 TeV has the bigger effect
- Milder impact wrt what was found for the <u>ATLASepWZtop18</u> fit (but here we have many other data sets added)

09/11/23

Francesco Giuli - francesco.giuli@cern.ch

ATL25 Internal

Х

Х

Scale and m_{top} variations on top data

- > μ_R variation by a factor 2 up/down
- Impact on the gluon PDF
- Scale dependence of 8 TeV tt data is very modest
- The effect of this scale change is well within the PDF uncertainties
- Study conducted on the 13 TeV tt data as well even smaller impact (more in backup)
- > We studied μ_R variations because it is the most impactful scale change (more in backup for μ_F)
- The variation of m_{top} considered as well
- Larger impact, still well within PDF uncertainties

Conclusion and outlook

- > Different $t\bar{t}$ data sets already included in recent ATLAS PDF studies
- > Gluon constraints at medium- and high-x (both shape and uncertainties)
- 8 TeV data have larger impact on the the gluon PDF wrt 13 TeV data (being the former more precise than the latter)
- What next? Investigate impact of <u>full Run 2 tt data</u> (1D, 2D and **3D (!!!)** lepton + jets channel)
 - NNLO predictions available through MATRIX + PineAPPL very CPUconsuming
 - > Possible extension to simultaneous extraction of PDF + m_{top} (+ α_s)
 - Check the complementarity with full Run 2 inclusive jet data
- > Run 3 is halfway through \rightarrow ~300 fb⁻¹ expected by end of 2025
- > Even more impressive results with larger dataset
- ➤ Interesting times ahead... Stay tuned! ☺

Backup Slides

epWZtop18: resulting PDFs

- > The model uncertainties include variations of the charm/beauty masses, the minimum Q^2 cut value and the Q_0^2 starting scale
- The parametrisation uncertainties correspond to an envelope of results obtained with extra parameters
- > The shapes of the extracted PDFs are not sensitive on the top quark mass, but the χ^2 of the fit is sensitive to it
- The strong coupling constant α_s was set to the PDG value and investigating its impact was beyond the scope of the study

- Predictions for a fit to some 1D spectra if using normalised or absolute distributions
- When including normalised cross sections, the last bin of the distribution is removed

- Predictions for a fit to some 1D spectra if using normalised or absolute distributions
- When including normalised cross sections, the last bin of the distribution is removed

Dataset	mtt (abs)	mtt (rel)	yt (abs)	yt (rel)
Exp. χ^2	1873	1879	1865	1861
Corr. χ^2	213	208	208	207
Total χ^2	2086	2087	2074	2068

- > Similar χ^2 (also the ones not reported)
- PDFs consistent within uncertainties
- No better description of the data if using normalised distributions instead of absolute ones
- Fit parameters compatible within uncertainties

- Predictions for a fit to some 1D spectra if using normalised or absolute distributions
- > When including normalised cross sections, the last bin of the distribution is removed

Dataset	mtt+pT (abs)	mtt+pT (rel)
Exp. χ^2	1877	1883
Corr. χ^2	212	208
Total χ^2	2089	2091

- We also tried to included two 1D spectra at a time...
- ... and same conclusions found! \succ

Х

Impact of scale variations on for data

- Renormalisation scale uncertainty variation by a factor 2 up/down
- Impact on the gluon PDF
- > Scale dependence of 13 TeV $t\bar{t}$ data TeV is negligible
- The effect of this scale change is well within the PDF uncertainties
- Smaller than the one observed for the 8 TeV tt data only

Х

Impact of scale variations on top data

- Factorisation scale uncertainty variation by a factor 2 up/down
- Impact on the gluon PDF
- Scale dependence of tt
 t
 data
 (both 8 and 13 TeV) is very modest
- > The effect of this scale change is well within the PDF uncertainties and it is smaller than the one observed for μ_R

