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 Probability of finding a parton with momentum fraction in the 
interval [𝑥, 𝑥 + 𝑑𝑥] is 𝑓 𝑥 𝑑𝑥 where 𝑓(𝑥) is the Parton Distribution 
Function (PDF).

 Can be probed experimentally via deep inelastic scattering (DIS).

 The advent of large-momentum effective theory (LaMET)1 in 2013 
allowed PDFs to be computed on the Euclidean lattice.
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𝑥𝑃!

𝑃!

1	X.	Ji.	PRL,	110,	(2013),	262002

Hadron	travelling	with	P! = ∞
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Matrix elementQuasi matrix element

Lorentz boost
Λ(∞)

1	X.	Ji.	PRL,	110,	(2013),	262002



4

ℎ! 𝑧, 𝑃" ℎ#(𝑧, 𝑃") ℎ#(𝑧 → ∞, 𝑃") )𝑓(𝑥, 𝑃") 𝑓 𝑥, 𝜇

Renormalize in hybrid-
ratio scheme2

Fourier Transform:

/𝑓 𝑥, 𝑃! = 0
"#

# 𝑃!𝑑𝑧
2𝜋 𝑒$%!&!ℎ' 𝑧, 𝑃!

Lightcone Matching:

𝑓 𝑥, 𝜇 = 𝒦"((𝑥, 𝑦, 𝜇, 𝑃!) ⊗ /𝑓(𝑦, 𝑃!)

1Bazavov	et.	al.,	PRD,	87,	054505,	2013
2X.	Ji	et.	al.	NPB,	964,	115311.	2021
3Gao	et.	al.	PRL,	128,	142003,	2022

Extrapolate to infinite 
distance3:

ℎ' 𝑧 → ∞, 𝑃! →
𝐴𝑒")!

𝑧𝑃! *

Fitting params.

Bare	MEs	from	MILC	collab1.



 Lattice	spacing,	𝑎 ≈ 0.09	fm.

 Box	width,	𝐿 = 64𝑎 ≈ 5.76	fm.
 Physical	pion	mass,	𝑚! ≈ 130 𝑀𝑒𝑉.

 𝑁" = 2 + 1 + 1	flavors	of	highly	improved	staggered	quarks.

 501,760	measurements	from	1960	lattice	configurations.

 Boost	momentum	𝑃# = 10× $!
%
≈ 2.2 𝐺𝑒𝑉.

 We	will	demonstrate	the	Renormalization	Group	Resummation	(RGR)1	and	Leading	
Renormalon	Resummation	(LRR)2	improvements on	nucleon	PDFs
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1Su,	JH	et.	al.	NPB,	991,	116201,	2023

2Zhang,	JH	et.	al.	PLB,	844,	138081



 Renormalize	in	the	ratio	scheme	at	short-distances	(𝑧 < 𝑧& ≈ 0.2 𝑓𝑚).
 Remove	the	linear	divergence	and	renormalon	ambiguity	at	large	distances	(𝑧 ≥ 𝑧&).

ℎ' 𝑧, 𝑃# =
𝑁

ℎ( 𝑧, 𝑃#
ℎ!( 𝑧, 𝑃# = 0

𝑧 < 𝑧&

𝑁𝑒 )*+*! #,#"
ℎ( 𝑧, 𝑃#

ℎ!( 𝑧&, 𝑃# = 0
𝑧 ≥ 𝑧&

 𝑁	is	a	constant	s.t.	ℎ' 𝑧 = 0, 𝑃# = 1.
 ℎ!( 𝑧, 𝑃# = 0 :	zero-momentum	pion	MEs	from	Lattice	Parton	Collab.1

 Linear	divergence	determined	by	fitting2	ℎ( 𝑧, 𝑃# 	to	𝐴𝑒,)*×#.

 Renormalon	ambiguity	determined	by	demanding	that	ℎ' 𝑧, 𝑃# 	agrees	with	operator	
product	expansion	for	𝑧 ≲ 0.2 fm:	Wilson	coefficients3.
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1Huo	et.	al.	NPB,	969,	115443,	2021
2X.	Ji	et.	al.	NPB,	964,	115311.	2021
3Zhang,	JH	et.	al.	PLB,	844,	138081



 Method	of	resumming	large	logarithms	that	appear	in	the	renormalization	and	matching	
process.

 Improve	Wilson	coeffs.

 𝐶. 𝑧, 𝜇 = 1 + /" 0 1#
$!

2
$
ln #$0$3$%&

4
+ 5
$

1,2.	Unpolarized	Wilson	coeff.	at	NLO.

 Set	initial	scale	to	𝜇 = 𝑐6× $3'%&
#
	before	evolving	with	renormalization	group.

 𝑐6 = 1.0	corresponds	to	central	value.	Upper	and	lower	error	bars	derived	from	𝑐6 = 0.75	
and	𝑐6 = 1.5.

 The	range	𝑐6 ∈ [0.75, 1.5]	corresponds	to	a	~15%	variation	about	𝛼& 𝜇 = 2.0 𝐺𝑒𝑉 3.
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1Izubuchi	et.	al.	PRD,	98,	056004,	2018
2Y.	Ji	et.	al.	arXiv:2212.14415
3Zhang,	JH	et.	al.	PLB,	844,	138081,	2023



 Perturbation	series	contain	divergences.

 Divergence	tends	to	emerge	when	we	expand	to	order	
𝑛~1/𝛼&(𝜇).

 When	we	apply	RGR,	this	becomes	important	due	to	
the	variable	energy	scale,	$3

'%&

#
.

 Apply	LRR	to	Wilson	coeffs.	to	account	for	this	
divergence1.

81Zhang,	JH	et.	al.	PLB,	844,	138081



 In	the	matching	kernel,	𝒦(𝑥, 𝑦, 𝜇, 𝑃#),	logarithms	appear	again.

 ln 0$

47$8($
∈ 𝒦 𝑥, 𝑦, 𝜇, 𝑃# 1,2.

 This	time,	set	initial	scale	to	𝜇 = 𝑐6×2𝑥𝑃#	before	evolving	with	DGLAP	equation	to	desired	
scale:	𝜇 = 2.0 𝐺𝑒𝑉3.

 Same	𝑐6	values	as	used	in	the	renormalization	process.

 DGLAP	equation	breaks	down	for	 𝑥 ≲ 0.2	where	𝛼&	becomes	non-perturbative.
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1Chen	et.	al.	PRL,	126,	072002,	2021
2Li	et.	al.	PRL,	126,	072001,	2021
3Su,	JH	et.	al.	NPB,	991,	116201.	2023



Renormalization
&	Matching

No	additions RGR	only LRR	only RGR	and	LRR

1st	order NLO NLO×RGR NLO+LRR (NLO+LRR)×RGR
2nd	order NNLO NNLO×RGR NNLO+LRR (NNLO+LRR)×RGR
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Renormalize	lightcone	PDF	in	𝑀𝑆	scheme	at	𝜇 = 2.0 GeV.
Unpolarized	nucleon	PDF:

𝑓 𝑥, 𝜇 = D
𝑓, 𝑥, 𝜇 − 𝑓* 𝑥, 𝜇 , 𝑥 > 0
𝑓* 𝑥, 𝜇 − 𝑓, 𝑥, 𝜇 , 𝑥 < 0

“quark	region”
“antiquark	region”
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Not	much	change	between	the	two	schemes.	Why	bother,	then,	with	the	renormalon	divergence?

NLO

NLO+LRR
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Significant	difference	between	these	two	schemes.	RGR	is	significant.

Preliminary

NLO

NLO×RGR
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Significant	difference	between	the	two	schemes.	Reduced	sys.	and	stat.	errors.
Renormalon	divergence	is	significant	when	RGR	is	used.

NLO×RGR
(NLO+LRR)×RGR

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

H
(x
,Q

2 ,
ξ,
μ) Preliminary



14

NLO

NLO×RGR
NLO+LRR
(NLO+LRR)×RGR
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15Same	behavior	we	see	at	NLO	applies	to	a	greater	extent	at	NNLO

NNLO

NNLO×RGR
NNLO+LRR
(NNLO+LRR)×RGR
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 Shown	the	first	unpolarized	nucleon	isovector PDF	matched	to	two	loops	with	
renormalization	group	resummation	and	leading	renormalon	resummation.

 Shown	that	the	benefits	afforded	by	RGR	and	LRR	are	much	reduced	systematics	like	in	
their	original	application	to	the	pion	PDF.

 Handling	of	systematic	errors	must	keep	pace	with	higher	order	renormalization	and	
lightcone matching.
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