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PARTON DISTRIBUTION
FUNCTION

= Probability of finding a parton with momentum fraction in the
interval [x, x + dx] is f(x)dx where f(x) is the Parton Distribution
Function (PDF).

= Can be probed experimentally via deep inelastic scattering (DIS).

= The advent of large-momentum effective theory (LaMET)!in 2013
allowed PDFs to be computed on the Euclidean lattice.
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LARGE-MOMENTUM EFFECTIVE
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FROM THE LATTICE

Fourier Transform:

Renormalize in hybrid- f(x, P) = j Pz—dz elXzZPz R (z,P,)
ratio scheme? _oo 2T

hR(Z — 0, P,) f(x: P,) f(x,u)

Bare MEs from MILC collab®. Extrapolate to infinite Lightcone Matching:
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LATTICE INFORMATION

= Lattice spacing, a = 0.09 fm.

= Box width, L = 64a = 5.76 fm.

= Physical pion mass, m,; = 130 MeV'.

= N = 2+ 1 + 1 flavors of highly improved staggered quarks.

= 501,760 measurements from 1960 lattice configurations.

= Boost momentum P, = 10><27n ~ 2.2 GeV.

= We will demonstrate the Renormalization Group Resummation (RGR)! and Leading
Renormalon Resummation (LRR)? improvements on nucleon PDFs

1Su, JH et. al. NPB, 991, 116201, 2023

2Zhang, JH et. al. PLB, 844, 138081
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HYBRID-RATIO RENORMALIZATION

= Renormalize in the ratio scheme at short-distances (z < z; = 0.2 fm).

= Remove the linear divergence and renormalon ambiguity at large distances (z = zy).

f h(z,P,)
B zZ < Zg
hR(z,B,) = { (2, B = 0)
y Iz hB(Z P) o £
Ne(5m+m0)(z—zs) 'z 7>z
\ hi (25, P, = 0) o W

= N isaconstants.t. hff(z = 0,P,) = 1.

« h2(z, P, = 0): zero-momentum pion MEs from Lattice Parton Collab.!

« Linear divergence determined by fitting? h®(z, P,) to Ae ~9™*Z

= Renormalon ambiguity determined by demanding that h®(z, P,) agrees with operator
product expansion for z < 0.2 fm: Wilson coefficients3.
'Huo et. al. NPB, 969, 115443, 2021
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RENORMALIZATION GROUP
RESUMATION

= Method of resumming large logarithms that appear in the renormalization and matching
process.

= Improve Wilson coeffs.

2,,2,2
= Colz,u) =1+ aS(Z!gCF Gln (Z “: YE) + ;)1'2. Unpolarized Wilson coeff. at NLO.

2e"VE

= Set initial scale to u = ¢’ before evolving with renormalization group.

= ¢/ = 1.0 corresponds to central value. Upper and lower error bars derived from ¢’ = 0.75
and ¢’ = 1.5.

= The range ¢’ € [0.75, 1.5] corresponds to a ~15% variation about a,(u = 2.0 Gel/)3.

1Izubuchi et. al. PRD, 98, 056004, 2018
2Y.Jiet. al. arXiv:2212.14415
3Zhang, JH et. al. PLB, 844, 138081, 2023
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LEADING REMORMALON
RESUMMATION

= Perturbation series contain divergences.
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= Divergence tends to emerge when we expand to order o
n~1/a5 (M) Eéa 0.20
zViE 0.15
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= When we apply RGR, this becomes important due to o . )

: 2¢VE R
the variable energy scale, < - 0.00
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Nth order

= Apply LRR to Wilson coeffs. to account for this
divergencel.

1Zhang, JH et. al. PLB, 844, 138081 @




RGR (MATCHING)

= In the matching kernel, K (x, y, u, P,), logarithms appear again.

2

-ln(“

4x2Pp?

) € :K:(nyr.ui PZ)LZ'

= This time, set initial scale to u = ¢’ xX2xP, before evolving with DGLAP equation to desired
scale: u = 2.0 Gel/3.

= Same ¢’ values as used in the renormalization process.

= DGLAP equation breaks down for |x| < 0.2 where a; becomes non-perturbative.

IChen et. al. PRL, 126, 072002, 2021
2Liet. al. PRL, 126, 072001, 2021
3Su, JH et. al. NPB, 991, 116201. 2023
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Renormalization | No additions RGR only LRR only RGR and LRR
& Matching

15t order NLOXRGR NLO+LRR (NLO+LRR)XRGR
2nd order NNLO NNLOXRGR NNLO+LRR (NNLO+LRR)XRGR

Renormalize lightcone PDF in MS scheme at u = 2.0 GeV.
Unpolarized nucleon PDF:

f(x ) _ fu(x; Il) - fd(x; ,Ll), x>0 “quark region"
' faCe ) — falx, ), x <0 “antiquark region”



NLO VS NLO+LRR
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Not much change between the two schemes. Why bother, then, with the renormalon divergence?
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NLO V§,NLOxRGR
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Significant difference between these two schemes. RGR is significant.



NLOXRGR VS (NLO+LRR)xRGR
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Significant difference between the two schemes. Reduced sys. and stat. errors.
Renormalon divergence is significant when RGR is used. @



ALL NLO SCHEMES
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ALL NNLO SCHEMES
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Same behavior we see at NLO applies to a greater extent at NNLO



CONCLUSION

= Shown the first unpolarized nucleon isovector PDF matched to two loops with
renormalization group resummation and leading renormalon resummation.

= Shown that the benefits afforded by RGR and LRR are much reduced systematics like in
their original application to the pion PDE

= Handling of systematic errors must keep pace with higher order renormalization and
lightcone matching.
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