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 Probability of finding a parton with momentum fraction in the 
interval [𝑥, 𝑥 + 𝑑𝑥] is 𝑓 𝑥 𝑑𝑥 where 𝑓(𝑥) is the Parton Distribution 
Function (PDF).

 Can be probed experimentally via deep inelastic scattering (DIS).

 The advent of large-momentum effective theory (LaMET)1 in 2013 
allowed PDFs to be computed on the Euclidean lattice.
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𝑥𝑃!

𝑃!

1	X.	Ji.	PRL,	110,	(2013),	262002

Hadron	travelling	with	P! = ∞
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Matrix elementQuasi matrix element

Lorentz boost
Λ(∞)

1	X.	Ji.	PRL,	110,	(2013),	262002
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ℎ! 𝑧, 𝑃" ℎ#(𝑧, 𝑃") ℎ#(𝑧 → ∞, 𝑃") )𝑓(𝑥, 𝑃") 𝑓 𝑥, 𝜇

Renormalize in hybrid-
ratio scheme2

Fourier Transform:

/𝑓 𝑥, 𝑃! = 0
"#

# 𝑃!𝑑𝑧
2𝜋 𝑒$%!&!ℎ' 𝑧, 𝑃!

Lightcone Matching:

𝑓 𝑥, 𝜇 = 𝒦"((𝑥, 𝑦, 𝜇, 𝑃!) ⊗ /𝑓(𝑦, 𝑃!)

1Bazavov	et.	al.,	PRD,	87,	054505,	2013
2X.	Ji	et.	al.	NPB,	964,	115311.	2021
3Gao	et.	al.	PRL,	128,	142003,	2022

Extrapolate to infinite 
distance3:

ℎ' 𝑧 → ∞, 𝑃! →
𝐴𝑒")!

𝑧𝑃! *

Fitting params.

Bare	MEs	from	MILC	collab1.



 Lattice	spacing,	𝑎 ≈ 0.09	fm.

 Box	width,	𝐿 = 64𝑎 ≈ 5.76	fm.
 Physical	pion	mass,	𝑚! ≈ 130 𝑀𝑒𝑉.

 𝑁" = 2 + 1 + 1	flavors	of	highly	improved	staggered	quarks.

 501,760	measurements	from	1960	lattice	configurations.

 Boost	momentum	𝑃# = 10× $!
%
≈ 2.2 𝐺𝑒𝑉.

 We	will	demonstrate	the	Renormalization	Group	Resummation	(RGR)1	and	Leading	
Renormalon	Resummation	(LRR)2	improvements on	nucleon	PDFs
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1Su,	JH	et.	al.	NPB,	991,	116201,	2023

2Zhang,	JH	et.	al.	PLB,	844,	138081



 Renormalize	in	the	ratio	scheme	at	short-distances	(𝑧 < 𝑧& ≈ 0.2 𝑓𝑚).
 Remove	the	linear	divergence	and	renormalon	ambiguity	at	large	distances	(𝑧 ≥ 𝑧&).

ℎ' 𝑧, 𝑃# =
𝑁

ℎ( 𝑧, 𝑃#
ℎ!( 𝑧, 𝑃# = 0

𝑧 < 𝑧&

𝑁𝑒 )*+*! #,#"
ℎ( 𝑧, 𝑃#

ℎ!( 𝑧&, 𝑃# = 0
𝑧 ≥ 𝑧&

 𝑁	is	a	constant	s.t.	ℎ' 𝑧 = 0, 𝑃# = 1.
 ℎ!( 𝑧, 𝑃# = 0 :	zero-momentum	pion	MEs	from	Lattice	Parton	Collab.1

 Linear	divergence	determined	by	fitting2	ℎ( 𝑧, 𝑃# 	to	𝐴𝑒,)*×#.

 Renormalon	ambiguity	determined	by	demanding	that	ℎ' 𝑧, 𝑃# 	agrees	with	operator	
product	expansion	for	𝑧 ≲ 0.2 fm:	Wilson	coefficients3.
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1Huo	et.	al.	NPB,	969,	115443,	2021
2X.	Ji	et.	al.	NPB,	964,	115311.	2021
3Zhang,	JH	et.	al.	PLB,	844,	138081



 Method	of	resumming	large	logarithms	that	appear	in	the	renormalization	and	matching	
process.

 Improve	Wilson	coeffs.

 𝐶. 𝑧, 𝜇 = 1 + /" 0 1#
$!

2
$
ln #$0$3$%&

4
+ 5
$

1,2.	Unpolarized	Wilson	coeff.	at	NLO.

 Set	initial	scale	to	𝜇 = 𝑐6× $3'%&
#
	before	evolving	with	renormalization	group.

 𝑐6 = 1.0	corresponds	to	central	value.	Upper	and	lower	error	bars	derived	from	𝑐6 = 0.75	
and	𝑐6 = 1.5.

 The	range	𝑐6 ∈ [0.75, 1.5]	corresponds	to	a	~15%	variation	about	𝛼& 𝜇 = 2.0 𝐺𝑒𝑉 3.
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1Izubuchi	et.	al.	PRD,	98,	056004,	2018
2Y.	Ji	et.	al.	arXiv:2212.14415
3Zhang,	JH	et.	al.	PLB,	844,	138081,	2023



 Perturbation	series	contain	divergences.

 Divergence	tends	to	emerge	when	we	expand	to	order	
𝑛~1/𝛼&(𝜇).

 When	we	apply	RGR,	this	becomes	important	due	to	
the	variable	energy	scale,	$3

'%&

#
.

 Apply	LRR	to	Wilson	coeffs.	to	account	for	this	
divergence1.

81Zhang,	JH	et.	al.	PLB,	844,	138081



 In	the	matching	kernel,	𝒦(𝑥, 𝑦, 𝜇, 𝑃#),	logarithms	appear	again.

 ln 0$

47$8($
∈ 𝒦 𝑥, 𝑦, 𝜇, 𝑃# 1,2.

 This	time,	set	initial	scale	to	𝜇 = 𝑐6×2𝑥𝑃#	before	evolving	with	DGLAP	equation	to	desired	
scale:	𝜇 = 2.0 𝐺𝑒𝑉3.

 Same	𝑐6	values	as	used	in	the	renormalization	process.

 DGLAP	equation	breaks	down	for	 𝑥 ≲ 0.2	where	𝛼&	becomes	non-perturbative.
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1Chen	et.	al.	PRL,	126,	072002,	2021
2Li	et.	al.	PRL,	126,	072001,	2021
3Su,	JH	et.	al.	NPB,	991,	116201.	2023



Renormalization
&	Matching

No	additions RGR	only LRR	only RGR	and	LRR

1st	order NLO NLO×RGR NLO+LRR (NLO+LRR)×RGR
2nd	order NNLO NNLO×RGR NNLO+LRR (NNLO+LRR)×RGR
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Renormalize	lightcone	PDF	in	𝑀𝑆	scheme	at	𝜇 = 2.0 GeV.
Unpolarized	nucleon	PDF:

𝑓 𝑥, 𝜇 = D
𝑓, 𝑥, 𝜇 − 𝑓* 𝑥, 𝜇 , 𝑥 > 0
𝑓* 𝑥, 𝜇 − 𝑓, 𝑥, 𝜇 , 𝑥 < 0

“quark	region”
“antiquark	region”
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Not	much	change	between	the	two	schemes.	Why	bother,	then,	with	the	renormalon	divergence?

NLO

NLO+LRR
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Significant	difference	between	these	two	schemes.	RGR	is	significant.

Preliminary

NLO

NLO×RGR
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Significant	difference	between	the	two	schemes.	Reduced	sys.	and	stat.	errors.
Renormalon	divergence	is	significant	when	RGR	is	used.

NLO×RGR
(NLO+LRR)×RGR
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NLO

NLO×RGR
NLO+LRR
(NLO+LRR)×RGR
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15Same	behavior	we	see	at	NLO	applies	to	a	greater	extent	at	NNLO

NNLO

NNLO×RGR
NNLO+LRR
(NNLO+LRR)×RGR
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 Shown	the	first	unpolarized	nucleon	isovector PDF	matched	to	two	loops	with	
renormalization	group	resummation	and	leading	renormalon	resummation.

 Shown	that	the	benefits	afforded	by	RGR	and	LRR	are	much	reduced	systematics	like	in	
their	original	application	to	the	pion	PDF.

 Handling	of	systematic	errors	must	keep	pace	with	higher	order	renormalization	and	
lightcone matching.
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