Jet in DIS as as a tool for Quantum tomography of the Proton

Miguel Arratia

CTEQ Fall meeting, Nov 9th 2023

Outline

- Jets in DIS as tool for Quantum tomography in QCD.
- Future prospects at the Electron-Ion Collider (EIC).
- An EIC pathfinder program with HERA data.

Goal: measure "projections" of the quantum-phase density in either position or momentum space ("GPDs" or "TMDs")

These functions follow a more complex set QCD of evolution equations

The EIC, a jet factory, will make the first jets in hadron-polarized DIS and nuclear DIS

Why are jets useful?

Proxies to quark and gluons
their substructure encodes
rich & useful info

Back-to-back topology in DIS

Electron-jet correlation: A new channel to probe for quark transverse-momentum distributions (TMDs) and evolution Liu et al. PRL. 122, 192003, Gutierrez et al. PRL. 121, 162001

"The advantage of the lepton-jet correlation as compared to the standard SIDIS processes is that it **does not involve TMD fragmentation functions.**"

$$\begin{split} \frac{d^5 \sigma(\ell p \to \ell' J)}{dy_{\ell} d^2 k_{\ell \perp} d^2 q_{\perp}} &= \sigma_0 \int d^2 k_{\perp} d^2 \lambda_{\perp} x f_q(x, k_{\perp}, \zeta_c, \mu_F) \\ &\times H_{\text{TMD}}(Q, \mu_F) S_J(\lambda_{\perp}, \mu_F) \\ &\times \delta^{(2)}(q_{\perp} - k_{\perp} - \lambda_{\perp}). \end{split}$$

Spin-orbit correlations lead to azimuthal asymmetries

Transversely-polarized proton

Projection for Lepton-jet Sivers asymmetry

$$q_T = |\vec{p}_T^e + \vec{p}_T^{\text{jet}}|$$

We estimated it to be feasible

Jets as precision probes in eA

M. Arratia et al. PRC 101 (2020) 6, 065204

Jets have rich substructure, which encodes rich TMD info such fragmentation, TMD evolution, and access to TMDs

"Hadron-in-jet asymmetries" will yield a wealth of information

 $e + p(\vec{s}_T) \rightarrow e + (\operatorname{jet}(\vec{q}_T)h(z_h, \vec{j}_T)) + X.$

Arratia et al. PRD 102 (2020) 7, 074015

Jets in charged-current DIS offer complementarity in flavour sensitivity and chiral structure

"Neutrino-tagged jets at the EIC", M. Arratia et al. PRD 107 (2023) 9, 094036 "Charm jets as a probe for strangeness at the future EIC", M. Arratia et al. PRD 103 (2021) 7, 074023

Charm jets as a probe for strangeness

Our feasibility studies suggest that the prospects for constraining unpolarized nucleon strangeness are rather promising in this channel.

M. Arratia et al. PRD 103 (2021) 7, 074023

Neutrino-jet transverse-spin asymmetry (Sivers function)

Hadron-in-jet with neutrino tagging (Collins effect = Zero exactly)

CC DIS offers complementary channel to NC DIS TMD studies

"Neutrino-tagged jets at the EIC", M. Arratia et al. PRD 107 (2023) 9, 094036

How to do jet clustering in the Breit Frame ("brick wall frame")?

Centauro Jet Algorithm

"Asymmetric jet clustering in deep-inelastic scattering", M. Arratia et al. PRD 104, 034005 (2021)

$$d_{ij} = (\bar{\eta}_i - \bar{\eta}_j)^2 + 2\bar{\eta}_i\bar{\eta}_j(1 - \cos(\phi_i - \phi_j))$$
$$\bar{\eta}_i \equiv -\frac{2Q}{\bar{n} \cdot q} \frac{p_i^{\perp}}{n \cdot p_i}$$

- Longitudinally invariant like kT but it can cluster struck-quark jet.
- First asymmetric clustering metric ever

Event shapes with Centauro metric

1-jettiness with jet axis at $O(\alpha \ s \)$ in deep inelastic scattering

1-jettiness with jet axis at $O(\alpha \ s \)$ in deep inelastic scattering

Chut et al. JHEP 06 (2022) 111

Figure 1. Two-body phase space for 1-jettiness, $\tau^{jt,kt}$ with jettiness/anti- k_T axis (left) and τ^{ct} with Centauro axis (right). 1-jettiness takes the same expression in first three regions while the

Jets were featured extensively in EIC detector proposals

ATHENA Collaboration J. Adam et al 2022 JINST 17 P10019

ePIC

a great jet detector with large-coverage Full calorimetry, PID and and tracking

Dedicated detectors for forward jets: M. Arratia et al. *NIMA 1047 (2023) 167866* We can actually explore the feasibility of these measurements and test the TMD calculations with the unpolarized data taken at HERA

EIC

Unfolding with Omnifold (via machine-learning).

Andreassen et al. PRL 124, 182001 (2020)

Omnifold allowed us to do a simultaneous, unbinned unfolding in 8D (probably a record)

"This measurement also represents a milestone in the use of ML techniques..."

H1 Collaboration, PRL 128 (2022) 13, 132002

Lepton-jet correlation

Textbook example of "matching" between collinear and TMD frameworks <u>First time seen in DIS!</u>

Follow up analysis: lepton-jet azimuthal modulations

Same data, same unfolding as first lepton-jet paper

Novel observable Promising for TMD studies But sensitive to gluon radiation as well

PRD 104 (2021) 5, 054037, *PRL*. 126 (2021) 14, 142001

Credit to Fernando Torales-Acosta (LBNL)

The Damocles Sword

Summary

Jets will provide us with an exciting new tool for the quest of "Quantum Tomography" at the EIC. We can do a lot today at HERA

