Heavy flavour physics at the LHC

Diego Torres Machado Universidade do Estado do Rio de Janeiro

28/02/2024

Summary

- Overview about the Standard Model of particle physics
- Particle identification and associated technologies
- Example of physics studies
 - \rightarrow CP violation in three-body B-meson decays
 - \rightarrow Rare *B*-decays
- Conclusion / perspectives

Flavour: quantum number that distinguishes quarks and leptons

Flavour: quantum number that distinguishes quarks and leptons

Heavy flavours

Flavour: quantum number that distinguishes quarks and leptons

Some take-away lessons about the SM

- Quarks and leptons are both elementary
 Leptons have integer electric charge; quarks have fractional charge
 Quarks and leptons are subjected to different fundamental interactions (weak, strong, EM)
 Two or more quarks combine to form hadrons → Hadrons = baryons + mesons
 - Free hadrons are believed to be unstable and *decay* into other particles
 - \rightarrow The proton seems to be an exception
 - \rightarrow Decay = interaction

Flavour: quantum number that distinguishes quarks and leptons

Some take-away lessons about the SM

- Quarks and leptons are both elementary
 Leptons have integer electric charge; quarks have fractional charge
 Quarks and leptons are subjected to different fundamental interactions (weak, strong, EM)
 Two or more quarks combine to form hadrons
 → Hadrons = baryons + mesons
- Free hadrons are believed to be unstable and *decay* into other particles
 - \rightarrow The proton seems to be an exception
 - \rightarrow Decay = interaction

For more details: Philipe de Fabritiis lectures

Scientific theory

- Theory with solid mathematical model which gives prediction that can be tested by experiments
 - Scientific theory
- A solid mathematical model which gives prediction that can be tested by experiments and measurements but no good interpretation
 Still scientific theory

The Standard Model has turned out to be astonishingly successful when compared to measurements

Dark matter

- Neutrino masses
- Proton decay
- Baryon asymmetry

Velocity (km s⁻¹) 50 10,000 20,000 30,000 40,000 Distance (light years)

Dark matter

- Neutrino masses
- Proton decay
- Baryon asymmetry

Dark matter

- Neutrino masses
- Proton decay
- Baryon asymmetry

Positron

Dark matter

- Neutrino masses
- Proton decay
 - Baryon asymmetry

Dark matter

- Neutrino masses
- Proton decay
- Baryon asymmetry

Why flavour is important?

- Most of the parameters in the SM are related to the flavour sector
 - \rightarrow Quark/lepton masses, mixing angles
- The flavour sector provides the only source of *CP*-violation in the SM
 - \rightarrow Necessary for baryogenesis in the SM
- Indirect measurements can probe mass scales well beyond directly accessible at the current particle accelerators

How to probe elementary particles?

 $E = h\nu = \frac{hc}{\lambda} \qquad p = \frac{h}{\lambda}$ $10^{-15} \text{m} \Rightarrow E > \text{GeV}$

 $1\mathrm{eV} = 1.6 \times 10^{-19} \mathrm{J}$

How to probe elementary particles?

 $E = h\nu = \frac{hc}{\lambda}$

Taking a closer look

- **D** Beams: cylinder-like bunches ~7.5 cm long and A_{eff} ~ 16x16 μ m²
- **\Box** Each bunch contains *N* ~10¹¹ protons
- Between each consecutive bunch there are 7.5 m
 - \rightarrow Bunch spacing t = 7.5 m/3.10⁸ m/s \rightarrow t = 25 ns
- Luminosity

Taking a closer look

- □ Beams: cylinder-like bunches ~7.5 cm long and A_{eff} ~ 16x16 µm²
- **\Box** Each bunch contains *N* ~10¹¹ protons
- Between each consecutive bunch there are 7.5 m
 - \rightarrow Bunch spacing t = 7.5 m/3.10⁸ m/s \rightarrow t = 25 ns
- Luminosity

 $\rightarrow 10^{12} b^{-}b^{+}$ produced in one year of data taking at 14 TeV

B-factories

- Electron-positron collider operating in the 2000's
- □ *B*-mesons produced via Y(4S)
- Environment much cleaner

Particle identification and

associated technologies

When can we detect a particle?

Particles can only be measured, if they

1. live long enough after creation to reach the detector

 \rightarrow The majority of particles are short-lived

	γ	p	n	e±	μ±	π [±]	K±
τ_0	∞	8	8	8	2.2 µs	26 ns	12 ns
L (p = 1 GeV)	8	∞	∞	∞	6.1 km	5.5 m	6.4 m

- \rightarrow Track length $L_{\text{track}} = v\tau = c\beta\gamma\tau_0$ where τ_0 is the lifetime at rest
- \rightarrow Small but finite life-time: *B***-mesons have ps lifetimes (~10⁻¹² s)**

2. interact with the detector

- \rightarrow Deposition of energy (dE/dx), transferred into a detector signal
- \rightarrow Neutrinos interact only weakly: need large detector volumes or giant fluxes (reactor experiments)

<i>B</i> -mesons				
Composition	B ⁺ : ub B ⁰ : db B ⁰ : sb B ⁺ ₂ : sb B ⁺ ₂ : cb			
Statistics	Bosonic			
Family	Mesons			
Interactions	Strong, Weak, Gravitational, Electromagnetic			
Symbol	B^+ , B^- , B^0 , \overline{B}^0 , B_s^0 , \overline{B}_s^0 , B_c^+ , B_c^-			
Antiparticle				
Mass	$B^+: \\ 5 279.34 \pm 0.12 \text{ MeV/}c^2 \\ B^0: \\ 5 279.65 \pm 0.12 \text{ MeV/}c^2 \\ B^0_s: \\ 5 366.88 \pm 0.14 \text{ MeV/}c^2 \\ B^+_c: 6 274.9 \pm 0.8 \text{ MeV/}c^2 \\ \end{array}$			
Mean lifetime	$\begin{split} B^+: & (1.638 \pm 0.004) \times 10^{-12} \text{ s} \\ B^0: & (1.519 \pm 0.004) \times 10^{-12} \text{ s} \\ B^0_s: & (1.515 \pm 0.004) \times 10^{-12} \text{ s} \\ (1.515 \pm 0.004) \times 10^{-12} \text{ s} \\ B^+_c: & (0.510 \pm 0.009) \times 10^{-12} \text{ s} \end{split}$			

Source: wikipedia

23

Energy loss mechanisms

Heavy charged particles	Light charged particles	Photons	Neutral particles	
Inelastic collisions with atomic electrons	Inelastic collisions with atomic electrons	Photoelectric effect	Elastic nuclear scattering A(n,n)A	
Elastic scattering from nuclei	Elastic scattering from nuclei	Compton scattering	Inelastic nuclear scattering A(n,n')A*	
Bremsstrahlung	Bremsstrahlung	Pair production	Radiative capture (n,y)	
Cherenkov radiation	Cherenkov radiation	Rayleigh scattering	Fission (n,f)	
Nuclear reactions	Nuclear reactions	Photonuclear reactions	Hadronic showers	
Hadronic reactions	Transition radiation			

Energy loss by ionization

- \Box "Heavy" particle: Mc² >> m_ec²
- □ Interaction dominated by collision with e-
- Quantum mechanical derivation by H.
 Bethe (1930) and F. Bloch (1933)

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Energy loss depends on the properties of the incident particle and target material

Energy loss by ionization

- \Box "Heavy" particle: Mc² >> m_ec²
- □ Interaction dominated by collision with e-
- Quantum mechanical derivation by H.
 Bethe (1930) and F. Bloch (1933)

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{\overline{A}} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2}{I^2} W_{\text{max}} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Energy loss depends on the properties of the incident particle and target material

Energy loss by ionization

- Ionization is a universal detection principle of semi-conducting sensors, gaseous detectors, etc
- □ Valid in the region $0.1 < \beta\gamma < 1000$ (accuracy of a few percent)
- Distinct zones and several corrections applied to the equation
- □ There is a broad minimum at $\beta\gamma \sim 3-3.5$ → Minimum ionizing particles (MIP)
- At $E_{\mu c}$, the energy loss by ionization becomes equal to the energy loss by radiation

Example: particle identification in a TPC (ALICE experiment)

Time Projection Chamber (TPC)

Energy loss by radiation: Bremsstrahlung

- Acceleration of charged particles in the Coulomb field of the nucleus
- QED process (Fermi 1924, Weizsäcker-Williams 1938), emission of a real photon

$$\frac{dE}{dx} = 4\alpha N_A \frac{z^2 Z^2}{A} \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 E \ln \frac{183}{Z^{1/3}} \implies -\left\langle\frac{dE}{dx}\right\rangle_{brem} \propto \frac{E}{m^2}$$

 \rightarrow The muon Bremsstrahlung is suppressed by a factor $(m_{\mu}/m_{e})^{2}$ = 40000

\Box Radiation length X_0

$$X_0 \approx \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}} \Longrightarrow \frac{dE}{dx} = \frac{E}{X_0} \Longrightarrow E = E_0 e^{-x/X_0}$$

 \rightarrow After passing a layer of material of thickness X_0 the electron has 1/e (~37%) of its initial energy

Energy loss by radiation: Cherenkov emission

- Charged particles emit radiation if they travel faster than th local speed of light (v = c/n)
- **Cherenkov light is emitted in a cone with \cos(\theta_c) = 1/\beta n**
- **D** There is a threshold for light production at $\beta = 1/n$
- Cherenkov emission is a weak effect and causes no significant energy loss (<1%)</p>
- Refractive index (n) selected according to the momentum region to be covered

Interactions of photons with matter

High energy photons typically interact by absorption

- $N = N_0 e^{-\mu x}$, μ(E, Z, ϱ): absorption coefficient
 - Photoelectric effect: the photon loses its energy to an atom which emits an electron
 - \rightarrow Secondary emission of characteristic x-rays and Auger electrons when the holes are re-filled
 - Compton effect: (quasi-) elastic scattering on an electron in the atomic shell (>>E_{bind})
 - Pair production: the photon converts to an e⁺e⁻ pair in the electric field of the nucleus

 \rightarrow From E > 1.022 MeV, dominant process with Bremsstrahlung at high energies

Interactions of photons with matter

Building your own detector

C. Lippmann - 2003

The LHCb experiment

Physics studies 1) *CP* violation

- Baryogenesis studies the origin of the matter / antimatter asymmetry (or "baryon asymmetry") of the universe
- Goal: understand what happened after the Big Bang that allowed matter to survive
- □ Intrinsically related to discrete symmetries charge C and parity P

Some processes involving weak interaction violate the CP symmetry

1973: Cabibbo-Kobayashi-Maskawa matrix

 \rightarrow describes the probability of flavour transition

Wolfenstein parametrisation Phys. Rev. Lett. 51 (1983) 1945 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & \lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ \lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \qquad \lambda \approx 0.23$ $\begin{array}{c|c} u & s & b \\ c \\ t & \bullet \\ \end{array}$

A complex phase in $V_{\rm CKM}$ is necessary to observe CP violation

To observe *CP* violation in decays: at least 2 <u>interfering amplitudes</u> must contribute to the same final state with different weak and strong phases

$$A_{CP} = \frac{|A(B \to f)|^2 - |A(\bar{B} \to \bar{f})|^2}{|A(B \to f)|^2 + |A(\bar{B} \to \bar{f})|^2} = \frac{2|A_2/A_1|\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)}{1 + |A_2/A_1|^2 + |A_2/A_1|\cos(\delta_1 - \delta_2)\cos(\phi_1 - \phi_2)}$$

CP violation at LHCb

CP violation at LHCb

40

Physics studies 2) Rare decays

Rare B meson decays

 $B_{\rm s/d} \rightarrow \mu^+ \mu^-$

 \rightarrow To probe processes where loop diagrams important, as here non-SM particles may contribute

- □ Very small Branching Ratio (BR) in the SM :-(
- □ Clean experimental signature :-)

Rare B meson decays

$$B_{\rm s/d} \rightarrow \mu^+ \mu^-$$

Signal vs background

- signal
- two muons from one displaced vertex
- momentum aligned with flight direction

- combinatorial
- muons from different b decays
- bb→µµX,µqX
- B→hµv, hµµ with single hadron mis-ID

semileptonic

populates left sideband

partially reco'd b-hadron

- double hadron mis-ID
- peaks in signal region

Phys. Lett. B 842 (2023) 137955

Conclusions

- □ Several aspects of the Standard Model still to be tested
- LHC run 3 just started! Much more data to analyse
- Next generation of particle colliders being studied

Conclusions

- LHC run 3 just started! Much more data to analyse
- Next generation of particle colliders being studied

How could YOU contribute?

Data analysis

			projections_pph.cpp				
		amespace std:				File Edit View Options Tools	Hel
vol(gSt gSt gSt gSt gSt gSt TH1 TH2 TSt TSt TSt	<pre>ojections.pph() yle->SetOptStat(0); yle->SetOptStat(0); yle-SetHitleFont(132, "xy yle-SetHitleYSite(0.do3) yle-SetHitleYSite(0.do3) ::SetDefaultSumx(1); ::SetDefaultSumx(1); :ring decay = ppK;; rring decay = regton3; rring axisProj = "PR03_V"; Reading data</pre>	2'); 2'); ; ;			20 10 10 10 10 10 10 10 10 10 10 10 10 10	LHCb - 5.9 fb ⁻¹ 1 1 5.9 fb ⁻¹ 1 1 1 1 16 18 20 22 24 m [*] (pr) [GCV ² /c]
	// TSt Int Dou TSt If TFi TFi Dec Dec // // if	ring datafile: blxdaltz, blxdaltz, blat B.m.sl2 DTF, s22, blat L.m.sl2 DTF, s22, blat L.m.sl2 DTF, s22, blat L.m.sl2 DTF, s22, blat L.m.sl2 DTF, s22, decay.compareTo("ppt") (decay.compareTo("ppt") (decay.compareTo("ppt") rres-setBranchAddress rres-setBranchAdress _	<pre>// , binPhSpace, B_ID; fr, 331_0TF, co3Hel_s12_0TF arighXdlitz, nassLowVdlit Dolitz, XlabeVlass, ylabeWl es/MA.v2//; == 0) (dataFile = "dataISI == 0) (dataFile = "dataISI "bin_rdB_n]; "bin_rdB_n]; "bin_rdB_n]; "bin_rdB_n]; bine*,sactrg; ss("acrrg_shine*,sactrg; ss("acrrg_shine*,sactrg; ss("scr_g_shine*,sactrg; ss("</pre>	; z, massHit 61718_ppK 61718_ppF 61718_ppP EAD"); Z_DTF); <i>spline);</i>);	ghYdalitz; eChannel; .root";} i.root";}	C6 Elle Edit View Options Tools R.n. 100 at A. a. (2010abant - 1 kit and 000 000 000 000 000 000 000 0	-B* -B* -B* -B* -B* -B* -B* -B* -B* -B*

Simulations

Instrumentation

Backup

Hadron collider environment

- Particle Identification (ID) is a crucial aspect of most High Energy Physics experiments: the detectors used depend on the physics under study
 - High energetic collisions occur at the interaction vertex
 - \rightarrow The resulting events should be reconstructed as fully as possible, where usually many particles emerge from the interaction point
 - \rightarrow Heavy SM particles cascade-decay
 - \rightarrow Decay length typical for *B*-mesons: ~7 mm
 - \rightarrow The interaction of secondary particles with the detector material is governed by the SM at low energies
- Many aspects of detector technology and conceptual design are governed by the need to isolate leptons (e/µ) and hadrons (π/K)

Particle identification is a big challenge!

The CMS experiment

Energy loss by ionization

- Ionization is a universal detection principle of semi-conducting sensors, gaseous detectors, etc
- □ Valid in the region $0.1 < \beta\gamma < 1000$ (accuracy of a few percent)
- Distinct zones and several corrections applied to the equation
- □ There is a broad minimum at $\beta\gamma \sim 3-3.5$ → Minimum ionizing particles (MIP)
- At $E_{\mu c}$, the energy loss by ionization becomes equal to the energy loss by radiation

Energy loss by radiation: Transition radiation

- If a particle traverses a surface separating two materials with different refraction index n₁≠n₂, radiation is emitted
- **D** Typical emission angle: $\theta \propto 1/\gamma$
- □ For ultra-relativistic particles ($\gamma > 1000$), hard UV radiation is emitted, closely collimated with the particle
- □ Measuring the intensity (γ) allows to identify charged particles when their momentum is known \Rightarrow

 \rightarrow Photons will be seen in same detector as the ionization from the track

Only x-ray (E > 20 keV) photons can traverse the many radiators without being absorbed

 $S = \frac{1}{3}\alpha z^2 \gamma \hbar \omega_p$

50

n

□ 1973: Cabibbo-Kobayashi-Maskawa matrix → describes the probability of flavour transition

Open-charm cross sections

- **Open-charm mesons:** a charm quark + a light quark
- ❑ Single-parton Scattering (SPS): one parton of each colliding hadron interacts with each other
 → Parton = quarks and gluons
- Double-parton Scattering (DPS): two partons of each incoming proton can interact
- □ **Production cross-section** for J/ψ with D^0 , D^+ and D_s^+ estimated by the LHCb collaboration → possibility of complementary studies with CMS
- □ From ~1 TeV the DPS contribution to the total cross-section starts to become important

