
Functional Programming
& why it’s relevant for HEP computing

Florine de Geus
florine.de.geus@cern.ch

15th Inverted CERN School of Computing
15/04/2024

mailto:{florine.de.geus@cern.ch}

About me

Doctoral student @ CERN and University of Twente (NL)

Working on ROOT, RNTuple to be exact

Today, I program almost exclusively in C++

Programming languages I’ve used before include Python, Haskell, C, Java, Ruby,
JavaScript (& more)

2

Why talk about functional programming?

I like it (but am by no means an expert)

It requires a different (mental) approach to the computing problem at hand

It’s becoming more and more relevant in our modern computing landscape
→ This includes HEP computing!

3

Lecture outline

What is functional programming?

The essentials of functional programming

Functional thinking in the real world

Wrap-up

N.B., There will be an opportunity to see what we will discuss today in action during tomorrow’s
exercise session

4

https://indico.cern.ch/event/1334738/contributions/5814276/
https://indico.cern.ch/event/1334738/contributions/5814276/

What is functional programming?

Declarative vs. imperative programming

Functional programming is a declarative programming paradigm

A declarative program describeswhat should be computed, rather than how

This is the opposite1 of imperative programs (written in e.g. C++ or Python)

1Many (modern) languages draw inspiration from both paradigms, as we will see today
6

(Pure) functional programming

A functional program is a function which takes an input as its arguments and
produces an output

This function is defined in terms of other functions or primitives (e.g., literals)

Purely functional programs have no side effects. This means that:

• Data is immutable, the global program state cannot be altered
• The order of execution of independent items is irrelevant

In other words, functional programming separates data from behaviour

7

The ingredients that give power to FP

Besides the absence of side effects, there are 4 more (interrelated) ingredients
that make functional programming extremely powerful:

1. Recursion is considered a first-class citizen, and enables looping over data in
a pure manner

2. Functions don’t have explicit return types, which allows for partial
application

3. Functions themselves are types, which gives rise to higher-order functions
4. Functions are evaluated lazily, which means computation only happens

when the result is needed

8

The essentials of functional
programming

Haskell

Haskell is a purely functional language

It has several implementations, with GHC being the most widely used

Programs can be compiled or interpreted interactively

It is mostly used in academic settings, but also has found its way into industry
applications from (among others) GitHub and Facebook

10

A Haskell function

A Haskell function consists of two parts: the type declaration and function
definition

add :: Int -> Int -> Int
add x y = x + y

Type declaration

Function definition

11

A Haskell function

A Haskell function consists of two parts: the type declaration and function
definition

add :: Int -> Int -> Int
add x y = x + y

Type declaration

Function definition

11

A Haskell function

A Haskell function consists of two parts: the type declaration and function
definition

add :: Int -> Int -> Int
add x y = x + y

Type declaration

Function definition

11

Recursion

Recursive functions are functions are defined in terms of themselves

For example, we can compute n! recursively as follows:

factorial n =

{
1 if n = 0

n · factorial (n− 1) otherwise

e.g., factorial 3 = 3 · factorial (2 · factorial (1 · factorial 0)) = 6

A recursive function must have one or more base cases to prevent infinite loops!

The Haskell implementation of factorial is left as an exercise to the reader ;)

12

Recursion

Recursive functions are functions are defined in terms of themselves

For example, we can compute n! recursively as follows:

factorial n =

{
1 if n = 0

n · factorial (n− 1) otherwise

e.g., factorial 3 = 3 · factorial (2 · factorial (1 · factorial 0)) = 6

A recursive function must have one or more base cases to prevent infinite loops!

The Haskell implementation of factorial is left as an exercise to the reader ;)

12

Partial application

Haskell functions don’t have an explicit return type, and as a consequence can be
applied partially, returning another function

add :: Int -> Int -> Int
add x y = x + y

13

Partial application

Haskell functions don’t have an explicit return type, and as a consequence can be
applied partially, returning another function

add :: Int -> Int -> Int
add x y = x + y

add_42 :: Int -> Int
add_42 x = add 42 x

13

Partial application

Haskell functions don’t have an explicit return type, and as a consequence can be
applied partially, returning another function

add :: Int -> Int -> Int
add x y = x + y

add_42 :: Int -> Int
add_42 = add 42 -- We can omit trailing arguments!

13

Partial application

Haskell functions don’t have an explicit return type, and as a consequence can be
applied partially, returning another function

add :: Int -> Int -> Int
add x y = x + y

add_42 :: Int -> Int
add_42 = add 42 -- We can omit trailing arguments!

This allows us to build functions “on the fly”

13

Higher-order functions
Functions can act as types themselves, and can be provided as function
arguments

apply_operator :: Num a => (a -> a -> a) -> a -> a -> a
apply_operator op x y = op x y

ń> apply_operator add 9 1
10

These functions can be defined and provided in-place with lambda function:

ń> apply_operator (\ x y -> x - y) 9 1
8

14

Higher-order functions
Functions can act as types themselves, and can be provided as function
arguments

apply_operator :: Num a => (a -> a -> a) -> a -> a -> a
apply_operator op x y = op x y

ń> apply_operator add 9 1
10

These functions can be defined and provided in-place with lambda function:

ń> apply_operator (\ x y -> x - y) 9 1
8

14

Higher-order functions
Functions can act as types themselves, and can be provided as function
arguments

apply_operator :: Num a => (a -> a -> a) -> a -> a -> a
apply_operator op x y = op x y

ń> apply_operator add 9 1
10

These functions can be defined and provided in-place with lambda function:

ń> apply_operator (\ x y -> x - y) 9 1
8

14

Intermezzo: lists

A list with elements of type α is recursively defined as follows:

listof α = [] | α : (listof α)

e.g., [1, 2, 3, 4, 5] = 1 : (2 : (3 : (4 : (5 : []))))

The first element in a list is referred to as the head, and the remaining elements
as the tail

x = [1, 2, 3, 4, 5]

Head Tail

15

Lazy evaluation
Lazy evaluation means the evaluation of an expression is only performed when
the results are needed by another computation

This property, together with the previously mentioned properties, gives us
powerful ways to evaluate data

filter_odds :: [Int] -> [Int]
filter_odds = filter odd

ń> filter_odds [1..5]
[1, 3, 5]

→What happens when we call filter_odds [1..] ?
→ What happens when we call take 5 (filter_odds [1..]) ?

16

Lazy evaluation
Lazy evaluation means the evaluation of an expression is only performed when
the results are needed by another computation

This property, together with the previously mentioned properties, gives us
powerful ways to evaluate data

filter_odds :: [Int] -> [Int]
filter_odds = filter odd

ń> filter_odds [1..5]
[1, 3, 5]

→What happens when we call filter_odds [1..] ?
→ What happens when we call take 5 (filter_odds [1..]) ?

16

Lazy evaluation
Lazy evaluation means the evaluation of an expression is only performed when
the results are needed by another computation

This property, together with the previously mentioned properties, gives us
powerful ways to evaluate data

filter_odds :: [Int] -> [Int]
filter_odds = filter odd

ń> filter_odds [1..5]
[1, 3, 5]

→What happens when we call filter_odds [1..] ?

→ What happens when we call take 5 (filter_odds [1..]) ?

16

Lazy evaluation
Lazy evaluation means the evaluation of an expression is only performed when
the results are needed by another computation

This property, together with the previously mentioned properties, gives us
powerful ways to evaluate data

filter_odds :: [Int] -> [Int]
filter_odds = filter odd

ń> filter_odds [1..5]
[1, 3, 5]

→What happens when we call filter_odds [1..] ?
→ What happens when we call take 5 (filter_odds [1..]) ?

16

Functional thinking in the real
world

Parallel, concurrent and distributed computing
Moore’s law states that the number of transistors in a microchip doubles every
year (with the costs remaining constant)

Need more performance? Buy new hardware!

However, we are running into several limits:
1. The power wall: higher clock rates could lead to overheating
2. The ILP wall: a single clock cycle can only take on so many instructions at

once
3. Thememory wall: memory performance has lagged behind CPU

performance

Instead, we have to increase performance through parallelism, concurrency and
the distribution of tasks over multiple resources

18

Challenges in parallel programming

Parallel computing does not come for free

Two important questions to consider:

• How to make sure one task cannot alter the data used in another task?

▶ Data is immutable, so the global program state cannot be altered

• What if task A finishes before task B?

▶ The order of execution of independent items is irrelevant

Now, recall what we mentioned about purely functional programs and the lack of
side effects

19

Challenges in parallel programming

Parallel computing does not come for free

Two important questions to consider:

• How to make sure one task cannot alter the data used in another task?

▶ Data is immutable, so the global program state cannot be altered

• What if task A finishes before task B?

▶ The order of execution of independent items is irrelevant

Now, recall what we mentioned about purely functional programs and the lack of
side effects

19

Challenges in parallel programming

Parallel computing does not come for free

Two important questions to consider:

• How to make sure one task cannot alter the data used in another task?
▶ Data is immutable, so the global program state cannot be altered

• What if task A finishes before task B?
▶ The order of execution of independent items is irrelevant

Now, recall what we mentioned about purely functional programs and the lack of
side effects

19

A pioneer in functional parallelism: MapReduce

Originally presented by Google,MapReduce is a programming model for parallel
and distributed data processing

It is based on two fundamental functions: map and reduce

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

ń> map (* 2) [1..5]
[2, 4, 6, 8, 10]

20

A pioneer in functional parallelism: MapReduce

Originally presented by Google,MapReduce is a programming model for parallel
and distributed data processing

It is based on two fundamental functions: map and reduce

reduce :: (a -> b -> b) -> b -> [a] -> b
reduce _ acc [] = acc
reduce f acc (x:xs) = f x (reduce f acc xs)

ń> reduce (*) 1 [1..5]
120

20

MapReduce in a nutshell
1. The input data set is split and distributed over n computation units
2. Amapper transforms each data element into a key-value pair
3. The key-value pairs are grouped by key
4. The reducermerges each value belonging to a key to a single, final value

In
pu
td
at
a

Data Map

Data Map

Data Map

Data Map

Result

⟨k0, {v0, v1, . . . }⟩ Reduce

⟨k1, {v0, v1, . . . }⟩ Reduce

⟨k2, {v0, v1, . . . }⟩ Reduce

CC BY-SA 3.0 Deed, Clém IAGL

21

https://fr.wikipedia.org/wiki/Fichier:Mapreduce.png

Functional patterns in other languages

Many of the concepts we’ve seen today have been adopted by imperative
languages

This includes C++ and Python

Other noteworthy examples include Rust, Scala and Julia

In general, languages are shifting from single-paradigm tomulti-paradigm

22

Functional patterns in C++

C++11 introduced lambda functions to the language:

auto add = [](int x, int y){ return x + y; }

We can use these with the algorithms STL library

std::vector<int> xs = {1, 2, 3, 4, 5};
std::vector<int> ys = {0, 0, 0, 0, 0};
std::transform(xs.begin(), xs.end(), ys.begin(),

[](int x){ return x * 2; });

→What is the value of ys ?

23

Functional patterns in C++ (2)

Variables and function arguments are not immutable by default

In fact, immutability can become tricky in a language that heavily relies on
passing-by-reference

Clever use of const qualifiers is necessary!

With these ingredients, we can start building concurrent and parallel programs
using C++’s built-in thread library or third-party tools such as Intel’s oneTBB

24

Functional patterns in Python (1)

Similar to C++, Python has the notion of lambda functions

add = lambda x, y: x + y

Some functions, like map and filter are built in

More functions are provided with the functools library

functools.reduce(lambda acc, x: acc * x,
[1, 2, 3, 4, 5],
1)

25

Functional patterns in Python (2)

In Python, lazy evaluation can be achieved with generators

def gen_fibonacci():
a, b = 0, 1
while True:

yield a
a, b = b, a + b

>>> fibonacci = gen_fibonacci()
>>> [next(fibonacci) for _ in range(10)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

26

Functional thinking in HEP: RDataFrame

ROOT’s RDataFrame enables the creation of physics analysis using functional
patterns

ROOT::RDataFrame df(”myEvents”, ”data.root”);
auto hist =

df.Filter(”charge1 * charge2 == -1”)
.Define(”invMass”,

”sqrt(2 * pt1 * pt2”
” * (cosh(eta1 - eta2) - cos(phi1 - phi2)))”)

.Histo1D(”invMass”);
hist->Draw();

27

Functional thinking in HEP: RDataFrame

ROOT’s RDataFrame enables the creation of physics analysis using functional
patterns

Besides providing interfaces that resemble functional patterns, RDataFrame
evaluates data lazily

This is achieved by first creating a computation graph, and only executing this
when results are requested

By first constructing the full computation graph, parallel scheduling of the tasks
becomes possible

27

Wrap-up

What we’ve discussed today
Functional programming is a programming paradigm where data is separated
from behaviour

This is achieved by ensuring data is immutable and the execution order of
independent tasks is irrelevant

Other powerful features of functional programming include recursion, partial
application of functions, higher-order functions and lazy evaluation

These ingredients give rise to patterns highly suitable for parallel, distributed
and concurrent computing

Because of this, functional thinking is applied more and more outside of pure
functional programming

29

What we’ve discussed today
Functional programming is a programming paradigm where data is separated
from behaviour

This is achieved by ensuring data is immutable and the execution order of
independent tasks is irrelevant

Other powerful features of functional programming include recursion, partial
application of functions, higher-order functions and lazy evaluation

These ingredients give rise to patterns highly suitable for parallel, distributed
and concurrent computing

Because of this, functional thinking is applied more and more outside of pure
functional programming

29

What we’ve discussed today
Functional programming is a programming paradigm where data is separated
from behaviour

This is achieved by ensuring data is immutable and the execution order of
independent tasks is irrelevant

Other powerful features of functional programming include recursion, partial
application of functions, higher-order functions and lazy evaluation

These ingredients give rise to patterns highly suitable for parallel, distributed
and concurrent computing

Because of this, functional thinking is applied more and more outside of pure
functional programming

29

What we’ve discussed today
Functional programming is a programming paradigm where data is separated
from behaviour

This is achieved by ensuring data is immutable and the execution order of
independent tasks is irrelevant

Other powerful features of functional programming include recursion, partial
application of functions, higher-order functions and lazy evaluation

These ingredients give rise to patterns highly suitable for parallel, distributed
and concurrent computing

Because of this, functional thinking is applied more and more outside of pure
functional programming

29

What we’ve discussed today
Functional programming is a programming paradigm where data is separated
from behaviour

This is achieved by ensuring data is immutable and the execution order of
independent tasks is irrelevant

Other powerful features of functional programming include recursion, partial
application of functions, higher-order functions and lazy evaluation

These ingredients give rise to patterns highly suitable for parallel, distributed
and concurrent computing

Because of this, functional thinking is applied more and more outside of pure
functional programming

29

Exercises

Your chance to apply what we have discussed in practice!

Tomorrow (Tuesday 16/04) from 13:45-15:45 in 513/1-024

Materials can be found on Indico

No special setup needed, just your laptop and an internet connection

Come say hi :D

30

https://indico.cern.ch/event/1334738/contributions/5814276/

Further learning

For more functional programming theory:
• Why Functional Programming Matters (paper)
• How Functional Programming Mattered (paper)

For more Haskell:
• Learn You a Haskell for Great Good!
• Real World Haskell
• Monday Morning Haskell

31

https://academic.oup.com/comjnl/article/32/2/98/543535?login=true
https://academic.oup.com/nsr/article/2/3/349/1427872?login=true
https://learnyouahaskell.com/
https://book.realworldhaskell.org/
https://mmhaskell.com/

Thank you!
& a special thanks to my mentor, Sebastien Ponce :)

	Introduction
	What is functional programming?
	The essentials of functional programming
	Functional thinking in the real world
	Wrap-up

