

A Practical Guide to Modern Natural Language Processing

Cristian Schuszter

CERN School of Computing

© Cristian Schuszter & CERN, iCSC, 15.04.2024

Outline

- 1. Ancient history
- 2. Common tasks
- 3. Classical models & applications
- 4. Feature engineering
- 5. The deep learning years
- 6. State of the art
- 7. Q&A

The imitation game

ChatGPT broke the Turing test – the race is on for new ways to assess AI

Large language models mimic human chatter, but scientists disagree on their ability to reason.

By <u>Celeste Biever</u>

🌒 (f) 🗖

What's going on behind the scenes

The dark ages - rule-based systems

	551	["alike", 10, [
Welcome to	552	["*", [
EE LL II ZZ AA AA	553	"In what way ?",
	554	"What resemblence do you see ?",
EEEEEE LLLLLL IIII ZZZZZZ AA AA	555	"What does that similarity suggest to you ?",
Eliza is a mock Rogerian psychotherapist. The original program was described by Joseph Weizenbaum i This implementation by Norbert Landsteiner 2005.	556	"What other connections do you see ?",
	557	"What do you suppose that resemblence means ?",
	558	"What is the connection, do you suppose ?",
	550	"Could there really be some connection ?",
ELIZA: Is something troubling you ?	560	"How ?"
ELIZA: What is the connection, do you suppose ?	561	11
YOU: They're always bugging us about something or other.	562	11,
YOU: Well, my boyfriend made me come here. ELIZA: Is it important to you that your boyfriend made you YOU: He says I'm depressed much of the time. ELIZA: I am sorry to hear that you are depressed. YOU: It's true. I am unhappy. ELIZA: Can you explain what made you unhappy ? YOU:	come here ?	https://github.com/oren/eliza-bot

The dark ages - rule-based systems (2)

https://patrickvanbergen.com/blocks-world/

Outline

- 1. Ancient history
- 2. Common tasks
- 3. Classical models & applications
- 4. Feature engineering
- 5. The deep learning years
- 6. State of the art
- 7. Q&A

Opinion/Sentiment analysis

Outline

- 1. Ancient history
- 2. Common tasks
- 3. Classical models & applications
- 4. Feature engineering
- 5. The deep learning years
- 6. State of the art
- 7. Q&A

Naive Bayes

Naive = words in the sentence are independent **Spam example:**

("Hello, this is a normal email", 0), ("Congratulations! You've won a free vacation", 1), ("Click here to claim your prize", 1), ("Meeting scheduled for tomorrow", 0), ("Limited time offer, buy now", 1)

P(spam) = 3/5 P(ham) = 2/5

P(SPAM | W) = ------P(W | SPAM) * P(SPAM)

P(W I SPAM) * P(SPAM) + P(W I HAM) * P(HAM)

Outline

- 1. Ancient history
- 2. Common tasks
- 3. Classical models & applications
- 4. Feature engineering
- 5. The deep learning years
- 6. State of the art
- 7. Q&A

Feature engineering

- Highly essential for building useful ML algorithms
- Range from simple to probabilistic distributions

Vector space models for text

© Cristian Schuszter & CERN, iCSC, 15.04.2024

One-hot encoding

Bag of n-grams

2-grams are called "bigrams"

{("To","be"), ("be","or"), ("or","not"), ("not","to"), To be, or not to be, that is the question ("to","be"), ("be","that"), ("that","is"), ("is","the"), ("the","question")} **TF-IDF**

Term Frequency - Inverse Document Frequency

Example:

Our document contains 100 words, 3 times cat.

TF(*cat*) = 3 / 100 = **0.03**

The database contains 10 million documents, and cat is in 1000 of those.

IDF(cat) = *log10(10.000.000 / 1000)* = **4**

TF_IDF(cat) = *TF(cat)* * *IDF(cat)* = 4 * 0.03 = **0.12**

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of *i* in *j* df_i = number of documents containing *i* N = total number of documents

What can I do with this?

- Topic modelling
 - Compute TF-IDF vectors of the documents in your corpus
 - Use a dimensionality reduction technique to visualize them
- Simple text classification
- Simple search engines
 - Pre-compute tf-idf for all your documents
 - Query comes in -> compute TF-IDF for the query
 - Find top k documents

Outline

- 1. Ancient history
- 2. Common tasks
- 3. Classical models & applications
- 4. Feature engineering
- 5. The deep learning years
- 6. State of the art
- 7. Q&A

But how can we capture meaning?

Feature engineering 2.0 - using deep learning

Word2Vec

Intuition: Given a document, for each word represent

- The probability of obtaining **a word** given the context around it (CBOW)
 - The sum of all the context should give this word as the most likely
- The probability of obtaining the context words given a word (Skip-gram)
 - More computationally expensive, better results in training
- Back-propagate (train the model) and adjust the representation of the word

Word2Vec: CBOW

target word

```
Word2Vec: Skip-gram
```


Similar algorithms

GloVe: Global Vectors for Word Representation

- Using global word-to-word co-occurence in the corpus for training
- Gradient descent for training
- Fasttext
 - Solves the problem of OOV (out of vocabulary) words.
 - Uses sub-words in the training and embedding process to make "educated guesses"

	anarchy	chy	<anar< th=""><th>narchy</th></anar<>	narchy
	monarchy	monarc	chy	<monar< td=""></monar<>
	kindness	ness>	ness	kind
	politeness	polite	ness>	eness>
En	unlucky	<un< td=""><td>cky></td><td>nlucky</td></un<>	cky>	nlucky
	lifetime	life	<life< td=""><td>time</td></life<>	time
	starfish	fish	fish>	star
	submarine	marine	sub	marin
	transform	trans	<trans< td=""><td>form</td></trans<>	form

Visualizing your word embeddings

Problem: High-dimensional data (300+ dimensions)

How do we get over this? Dimensionality reduction techniques

Most popular: Principal Component Analysis (PCA) & tSNE

MNIST - PCA

MNIST - TSNE

-6

https://projector.tensorflow.org/

© Cristian Schuszter & CERN, iCSC, 15.04.2024

Deep learning models

- Mainly 2 use-cases:
 - Classification
 - Language modeling (question answering, translation)
- Much more performant than classical techniques

Caveats

- Computationally expensive to train
 - Many parameters for the weights
 - Hard to parallelize
- Doesn't do well on long inputs

Example classification architecture

Text CNN

https://arxiv.org/abs/1408.5882

© Cristian Schuszter & CERN, iCSC, 15.04.2024

Encoder - decoder models - RNN, GRU, LSTM

GRU vs LSTM cells

Outline

- 1. Ancient history
- 2. Common tasks
- 3. Classical models & applications
- 4. Feature engineering
- 5. The deep learning years
- 6. State of the art
- 7. Q&A

© Cristian Schuszter & CERN, iCSC, 15.04.2024

Transformers

- Recurrent / convolutional models are really slow to train and don't scale
- Intuitive example: translation
 - Language A gets encoded
 - Gets decoded into sentence for Language B

https://arxiv.org/abs/1706.03762

Output Probabilities Add & Norm Softmax Feed Forward Linear Encoder #2 Decoder #2 Add & Norm Multi-Head Add & Norm < Attention Feed Forward Add & Norm Add & Norm < Multi-Head Feed Attention Forward Encoder #1 → Add & Norm Add & Norm < Multi-Head Multi-Head Attention Attention Positional Positional Encodina Encodina Input Output Embedding Embeddina Previous Outputs Inputs (shifted right)

Decoder #1

Attention & masked language model training

Thank you!

Contact:

- Emails:
 - Work: <u>cristian.schuszter@cern.ch</u>
 - Not work: chrisschuszter@gmail.com

