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Outline

● Why GPUs? Why CuPy?
● Two real-world use cases
● Live Demo
● CuPy features and capabilities
● Speedup results for the presented use cases
● How to access CERN resources
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● Originally (80s-90s) built for graphics, 
called Video Graphics Arrays/ Adapters 
(VGAs)

● In 2007, Nvidia introduces CUDA to 
facilitate general-purpose application 
development

● Combination of computing-capacity and 
cost-efficiency        dominant platform 
for general-purpose acceleration

● Nowadays: Widespread applicability 
in every computing domain

Why GPUs?
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1999: World’s first GPU 
GeForce 256

2007: Initial CUDA 
release 

2008-2016: CPU- GPU, 
peak performance 
comparison [1]

Present: Widespread 
Adoption of GPUs
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[1] https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
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GPU Challenges

1. GPUs are throughput oriented devices: 
○ GPUs implement SIMD: Single operation on multiple data points simultaneously
○ Massive multi-threading and widely vectorized execution units

2. Cumbersome programming model:
○ Implicit parallelism: Every code line executed by multiple threads
○ Limited debugging tools

3. Performance bottlenecks: Can negate potential performance gains
○ Data transfers
○ Memory management
○ Thread divergence

4
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Zoo of GPU Programming Solutions
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Why CuPy?

● Beginner friendly:
○ Requires minimal knowledge of GPU programming 

model and architecture
○ Easy-to-install (pip, conda)

● Flexibility and applicability:
○ Drop-in replacement for NumPy & SciPy (equivalent API)

■ Complete list: 
https://docs.cupy.dev/en/stable/reference/comparison.html 

○ Multiple ways to implement GPU kernels
○ NVIDIA + AMD platforms  

● Efficiency:
○ Most modern features, optimized libraries
○ Extremely low-overhead
○ Low-level support
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https://docs.cupy.dev/en/stable/reference/comparison.html
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● Phase space describes state of a physical system
● Analogous to pendulum motion

○ Described by angle and angular velocity (change in angle)

Use Case: Synchrotron Motion
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Tracking particles
Use Case: Synchrotron Motion
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Use Case: Synchrotron Motion

● Distribution of macroparticles in phase space
○ Given in phase and energy (or equivalent) coordinates

● Can be described by alternating kick and drift
○ Kick affects energy coordinates (Particle traversing RF station)
○ Drift affects phase coordinates (Trajectory bent by magnetic field)

● Calculation does not depend on other particles
○ Highly parallelizable
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Use Case: Beam Longitudinal Dynamics (BLonD) Code

● Particle tracking simulator, specializes on the longitudinal plane (δτ, δE)
● Modular structure, can simulate a wide range of conditions

○ Energy regimes (MeV to TeV)
○ Particle types (electron, proton, muon, …)
○ Actively used for PSB, PS, SPS, LHC, FCC, Muon Collider, etc

● Indispensable tool for:
○ Efficient operation
○ Accelerator upgrades
○ Future projects

● Written in Python, with accelerated backends (C++, Numba, CuPy, MPI)
● Well documented and benchmarked, recently PRAB Editor’s Suggestion [1]
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[1] H. Timko et al. ”Beam longitudinal dynamics simulation studies”, https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.114602
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Use Case: BLonD Applications (simple)

Example simulation of a bunch undergoing 
oscillations at injection

Here, the tracking can be completely 
parallelized
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Use Case: BLonD Applications (more complicated)
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LHC controlled 
emittance blow-up 
by injection of RF 
phase noise

LHC Injection errors correction 
with beam feedbacks: phase-loop 
(top) and synchro-loop (bottom)

PS-to-SPS transfer with 
RF manipulations: 
bunch splittings, bunch 
shortening and rotation. 

2

1 3

Source: https://blond.web.cern.ch/applications



Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Use Case: Longitudinal Phase Space Tomography

● Goal: Reconstruct the distribution of a particle bunch in longitudinal phase 
space

● Analogous to medical Tomography
○ Breathing patient [2]
○ Bunch rotating in phase space

● Input:
○ Accelerator and beam parameters
○ Measured (or generated) 1D bunch profiles

● Output:
○ Reconstructed 2D phase space distribution
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Rotating bunch in phase space in the PSB [1]

[1] https://tomograp.web.cern.ch [2] A. Biguri et al. “A General Method for Motion Compensation in X-ray Computed Tomography”, https://iopscience.iop.org/article/10.1088/1361-6560/aa7675 

https://tomograp.web.cern.ch


Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Two main parts of the application
1. Tracking

○ Generate a distribution of particles
○ Track particles for a number of turns (based on applying

equations of motion)
○ Store the phase/time and energy coordinates of the particles
○ Massively parallelizable

2. Tomography reconstruction
○ Initialize weights for particles based on their coordinates
○ Reconstruct a profile based on initial weights
○ Iteratively adjust both weights and reconstructed profile until 

convergence (based on difference)
○ Partly parallelizable

Use Case: Longitudinal Tomography
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Measured and reconstructed profile

Iterative reconstruction
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How can BLonD and Tomography profit from GPUs?
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● Computationally intensive
○ Tracking: trigonometric, exponential, etc
○ FFTs: Forward and backward FFTs
○ Linear algebra: Array and vector operations

● Data parallel, mostly dependency-free
● Large input sets

○ Number of simulated particles: 1 Million - 1 Billion
● Infrequent need for CPU-GPU memory transfers

○ Apart from periodic need for plotting/data storage, all other operations are GPU-accelerated



Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

Interactive Session

● https://gitlab.cern.ch/beams-and-rf-training/icsc-2024-cupy 
● First steps with CuPy

○ Creating CuPy arrays
○ Timing basic CuPy array operations
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● When considering doing work on GPU, keep four things in mind
○ Input size: Large enough to keep GPU cores busy?
○ Arithmetic Intensity: Is the computation heavy enough?
○ Data type length: Is highest precision necessary or can it be reduced to achieve a 

better performance?
○ Memory transfer: Do we have to copy lots of data? Is there a way to keep them on 

one device to minimize transfers?
● There is no one-size-fits-all solution

○ Profile your code to see which device performs the best

https://gitlab.cern.ch/beams-and-rf-training/icsc-2024-cupy
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CuPy Features: Supported functions

Complete list here: https://docs.cupy.dev/en/stable/reference/comparison.html 
● Includes NumPy and SciPy routines
● CuPy behaves like a drop-in replacement for NumPy/SciPy
● NumPy and CuPy can be used interchangeably
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import numpy as np
import cupy as cp

for xp in [np, cp]:
x = xp.arange(10)
W = xp.ones((10, 5))
y = xp.dot(x, W)
print(y)

https://docs.cupy.dev/en/stable/reference/comparison.html


Bernardo Abreu Figueiredo | GPU Programming Made Easy with CuPy 15.04.24

CuPy Features: Drop-in replacement for NumPy

CuPy Arrays - Almost identical interface with NumPy arrays
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import numpy as np
import cupy as cp

# Supports all array creation routines, like zeros, ones, empty, etc
dev_a = cp.arange(10, dtype=int)
dev_b = cp.array([1, 2, 3, 4])
print(type(dev_a)) ## Output: <class 'cupy.ndarray'>

# Can be printed out of the box, though this results in device to host memory copying
%time print(dev_a) ## Output: [...] Wall time: 2 ms

a = np.arange(10, dtype=int)
%time print(a) ## Output: [...] Wall time: 223 µs
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CuPy Features: Drop-in replacement for NumPy
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# strided with start stop index
print(dev_a[1:-1:2])
# using list of indices to gather
print(dev_a[[0,2,4]])
# or with boolean list
print(dev_a[dev_a % 3 == 0])

# Easy to transfer arrays between device and the host
a = np.arange(0, 20, 2)
dev_a = cp.asarray(a)

# GPU/CPU agnostic code also works with CuPy
xp = cp.get_array_module(dev_a) # Returns cupy if any array is on the GPU, otherwise numpy
y = xp.sin(dev_a) + xp.cos(dev_a)

# To get an array back to the host is simple:
b = cp.asnumpy(dev_a)
c = dev_a.get()
print(type(b), type(c))

# Cupy can (in exceptions) operate solely on numpy arrays
print(cp.allclose(b, c))

CuPy also supports all sorts of indexing CuPy interoperable with NumPy arrays

CuPy allows to write CPU/GPU agnostic code
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Flexibility for expressing and launching GPU kernels

20

1. Supported Numpy functions:

Bonus: Fuse operations in a 
single kernel

2. Templated kernels for 
element-wise operations and 
reductions. 

3. With “raw” CUDA code

Automatic number of threads 
definition

Automatic number of threads 
definition - Manual number of threads definition

- Also supports loading pre-compiled 
kernels

# Just a random compute intensive function
def saxpy_trig(x, y, a):
    return cp.exp(a * cp.sin(x) + cp.cos(y))

res = saxpy_trig(dev_x, dev_y, 0.5)

@cp.fuse(kernel_name=‘saxpy_trig_fused’)
def saxpy_trig_fused(x, y, a):
    return cp.exp(a * cp.sin(x) + cp.cos(y))

res = saxpy_trig_fused(dev_x, dev_y, 0.5)

saxpy_trig_elemwise = cp.ElementwiseKernel(
    ‘float32 x, float32 y, float32 a’, # Input Types
    ‘float32 z’,            # Output Types
    ‘z = exp(a * sin(x) + cos(y))’,    # Operation
    ‘saxpy_trig_elemwise’              # Kernel name
)

res = saxpy_trig_elemwise(dev_x, dev_y, 0.5)

saxpy_trig_raw = cp.RawKernel(r```
#include <cupy/complex.cuh>
extern “C” __global__
void saxpy_trig_raw(const float* x, const float* y,
                    float a, float*z, int n)
{
    int tid = blockDim.x * blockIdx.x + threadIdx.x;
    if (tid < n)
        z[tid] = exp(a * sin(x[tid]) + cos(y[tid]));

}
‘’’, ‘saxpy_trig_raw’)    

res = saxpy_trig_raw(args=(dev_x, dev_y, 0.5, 
                           dev_out, len(dev_x)),
                     grid=((len(dev_x)+1023)//1024,),
                     block=(1024,))
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CuPy Features: Access CUDA API

Exploring the available device and its attributes
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import cupy as cp
device = cp.cuda.Device()
device.use()

print('Using device: ', cp.cuda.runtime.getDeviceProperties(device)['name'])
## Output: Using device: b’Tesla T4’

attributes = device.attributes
properties = cp.cuda.runtime.getDeviceProperties(device)
print('Number of multiprocessors:', attributes['MultiProcessorCount'])
## Output: Number of multiprocessors: 40

print('Global memory size (GB):', properties['totalGlobalMem'] / (1024**3))
## Output: Global memory size (GB): 14.58062744140625
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CuPy Features: Access CUDA API to time functions

CUDA events to time GPU kernels
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# It is trickier to time GPU kernels, because they behave asynchronously w.r.t the host
def benchmark(func, args, n_repeat=10, n_warmup=1):
    import cupy as cp
    gpu_start = cp.cuda.Event()
    gpu_end = cp.cuda.Event()
    for i in range(n_warmup):
        out = func(*args)

    gpu_start.record()
    for i in range(n_repeat):
        out = func(*args)

    gpu_end.record()
    gpu_end.synchronize()
    t_gpu = cp.cuda.get_elapsed_time(gpu_start, gpu_end)
    print('Average GPU time (ms): ', t_gpu / n_repeat)
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CuPy Advanced Features: Streams

● Concurrency through pipelining
● Overlap memory transfers with kernel executions

23

Memcpy (D2H)

H2D-1 K1 D2H-1

Time

Sequential:

Concurrent:

Memcpy (H2D) Kernel Exec

H2D-2 K2 D2H-2
H2D-3 K3 D2H-3

TimeH2D: Host to Device, D2H: Device to host
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CuPy Advanced Features: Streams
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import cupy as cp
import numpy as np

rand = cp.random.RandomState(seed=1)
streams = []

for i in range(10):
streams.append(cp.cuda.Stream()) # Create the streams

y_cpu = np.random.normal(size=(2**24, 1)) # Create one random matrix in CPU

for stream in streams: # Iterate over streams and execute operations asynchronously
with stream:

    x = rand.normal(size=(1, 2**24)) # Create other random matrix on GPU
    y = cp.asarray(y_cpu) # Transfer CPU matrix to GPU
    z = cp.matmul(x, y) # Multiply matrices

for stream in streams:
stream.synchronize() Overlapping execution!
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CuPy Advanced Features: Memory Pool

● Memory allocations (on the GPU) can be 
costly

● Memory pool: Software managed GPU 
memory region

● Instead of deallocating memory: Keeping it 
for future use

● Caches allocated memory blocks
● Reduce cost of alloc/free

25

Introduction to Efficient Computing, A. Nowak, tCSC-22
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GPU Models used at CERN
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Model Tesla T4 V100 A100

Generation Turing (2019) Volta (2018) Ampere (2020)

Transistors 13.6 billion 21.1 billion 54.2 billion

RAM 16 GB 32 GB 40 GB

Bandwidth 320 GB/s 900 GB/s 1555 GB/s

Cores 40 80 108

Peak FP32 Perf. 8.1 TFLOPS 15.7 TFLOPS 19.5 TFLOPS

Peak FP64 Perf. 0.25 TFLOPS* 7.8 TFLOPS 9.7 TFLOPS

TFLOPS = 1012 floating-point operations per second
* Estimated value, not given in documentation
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Results of using GPU for Longitudinal Tomography

● Initially: Python and C++/OpenMP
● Now: Python, choice between C++/OpenMP and CuPy with raw CUDA 

kernels
● Tracking and reconstruction more than 25x faster on GPU
● Impact stronger with 32-bit floats (single precision)
● Side effects: Better performance outside of CUDA kernels (using CuPy 

functions instead of NumPy functions)

27
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GPU Benchmarks for Longitudinal Tomography
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CuPy BLonD Speedup 

Over two-orders of magnitude speedup in three real-world test-cases. Baseline: Intel Xeon Silver 4216

29
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Getting Started with CuPy

● Requirements:
○ NVIDIA CUDA GPU
○ CUDA Toolkit v11.2 or higher
○ Python 3.9 or higher

● Easy installation with pip or conda:
○ conda install -c conda-forge cupy
○ pip install cupy

● More information: https://docs.cupy.dev/en/stable/install.html 

30

https://docs.cupy.dev/en/stable/install.html
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Accessing Resources Interactively

● Notebooks (GUI):
○ Swan (Need to request access)

■ https://swan-k8s.cern.ch 
■ Equipped with T4 GPUs

● Scripts & command line interface
○ LXPLUS Service

■ Equipped with T4 GPUs
■ ssh address: [user]@lxplus-gpu.cern.ch

31

https://swan-k8s.cern.ch/
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Accessing Resources in Batch mode

● Submit jobs: 
condor_submit -i 
condor.sub

● Available GPU models:
○ A100
○ V100
○ T4

● Better for longer runs
● More information at: 

https://batchdocs.web.cern.ch/ 
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####################
# File: condor.sub
# HTCondor submit file
####################

# Define executable script
executable = condor.sh

# Define output/ error files
output = output.txt
error        = error.txt
log          = log.txt

# Request 1 GPU
request_gpus = 1

# Optionally, specify GPU model name
requirements = regexp("A100", TARGET.GPUs_DeviceName)

+MaxRuntime = 3600

queue

#!/bin/bash

####################
# File: condor.sh
# Simple executable script
####################

source $USER/.bashrc

python my_script.py

https://batchdocs.web.cern.ch/
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Key Takeaways

● GPUs offer massive computing capacity
○ Harvesting it can be tedious

● High-level libraries can simplify GPU development
● CuPy: A good first step to start with GPU programming

○ User-friendliness
○ Flexibility
○ Performance, low-level support

● Impressive real-world speedup
○ BLonD: 20-100x faster
○ Tomography: 6-20x faster

● Easy to get started
○ Plenty of resources at CERN
○ Interactive and batch access
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