
The perfectly parallel program
Design philosophy for parallel programming

Zenny VVettersten (CERN, TU Wien)

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 1

mailto:zenny.wettersten@cern.ch
mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Recap

Vectorised hardware and heterogeneity

• Vectorised (SIMD/SIMT) instructions
• Performs same operation on many data simultaneously
• Simultaneity requires “non-divergent”1 program flow
• If code divergence depends on data; should factorise such branches
• Vectorised ̸= heterogeneous; Local SIMD CPU, or offload to a device

• Heterogeneous computing
• Offload part of program to external device
• Communication becomes limiting factor in possible speedup

1Code may branch, but all data in the same batch should take the same data path.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 2

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

General rules for parallel and heterogeneous programs

• Maximise parallelism, minimise sequential code
• The vectorised sections should be as long as possible
• Factorise/remove conditionals from vectorised code

• Localise communication, avoid synchronisation
• Data transfer between devices should happen as few times as possible
• Better to send all data as once than passing back and forth
• Larger sequential sections might be preferable if it avoids communication

• Work with your available hardware
• Multi-core CPUs allow multithreading, does little2 for data-parallelism
• SIMD CPUs give free speedup, but conditionals are destructive
• Most GPUs are very bad at double precision arithmetic

2Multithreaded data parallelism can be preferable to task parallelism when singular jobs are bottlenecks.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 3

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Defining parallelism

Reminder: Amdahl’s and Gustafsson’s laws

1 8 64 512 4096 32768
Number of simultaneous instructions [n]

2

4

6

8

10

Sp
ee

du
p

Amdahlian acceleration from data parallelism
for parallel fraction p

p=0.1
p=0.3
p=0.6
p=0.9

Speedup =
tpar
tseq

∣∣∣∣
data

1 8 64 512 4096 32768
Number of simultaneous instructions [n]

100

101

102

103

104

105

Sp
ee

du
p

Gustafssonian acceleration from data parallelism
for parallel fraction p

p=0.1
p=0.3
p=0.6
p=0.9

Speedup =
datapar
dataseq

∣∣∣∣
t

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 4

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Examples of data parallel methods in HEP

• Monte Carlo event generation
• Both embarrassingly parallel and (mostly) lockstep
• Involves same amplitude evaluation across many phase space points

• Simulations
• Detector simulations highly branching, but still embarrassingly parallel
• GPUs have huge throughput — alright to throw away some results
• GPUs fundamentally image renderers: Made for optical particles

• On- and offline signal analysis
• (Triggering and tagging suited for ML3)4

• Vertex reconstruction involves interpolating thousands of tracks
• Fitting data means minimising NLL over parameter space

3Complex problems with large data reduction and an a priori unknown solution.
4Additionally, FPGAs are perfect for the fast throughput needed for triggers.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 5

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Lockstep_(computing)
mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

tl;dr:
Parallel algorithms have independent

steps and can be performed in lockstep,
which a lot (but not all!) HEP code

fulfills

Writing parallel programs

Checking the fairness of a coin

Problem formulation: We have a coin simulator coinFlip(),
which when called returns either heads (+1) or tails (-1). We do
not know a priori that coinFlip() is fair (i.e. has an exactly
50/50 chance of returning either heads or tails), and while we do
not know the inner mechanism of the simulator we have been
assured that it is thread-safe and branch-free.
Now we want to statistically test whether coinFlip() is fair.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 7

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Question 4

What type of problem is this?
Is data-parallelism a good solution?

Answer
Example program solution:

1: procedure coinIsFair(n)
2: flips ← zeros(size = n)
3: mcDev ← 1/sqrt(n)
4: for i = 1, . . . , n do ▷ This loop is trivially data parallel.
5: flips(i)← coinFlip()
6: avg ← sum(flips)
7: if |avg | < mcDev then
8: write(The coin seems fair.)
9: else

10: write(The coin seems unfair.)

More complicated example: Finding an unfair coin?

Problem formulation: We now have a multiple coin simulator
coinsFlip(k) which takes an integer 0 ≤ k ≤ 9 to decide which
of ten coins to flip. Like before, each single coin is thread-safe and
branch-free, but coinsFlip(k) itself branches based on the
argument. We have been told that at least one of the coins is
unbalanced, but we do not know which or how unbalanced it is.
We want to determine which coin(s) is/are unfair.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 10

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Question 5

How do we adapt our previous method to this branching case?

Answer

Example program solution:

1: function coinIsFair(n, k)
2: flips ← zeros(size = n)
3: mcDev ← 1/sqrt(n)
4: for i = 1, . . . , n do
5: ▷ This loop can trivially be

made data parallel. ◁
6: flips(i)← coinsFlip(k)
7: avg ← sum(flips)/n
8: return (|avg | < mcDev)

1: procedure fairChecker(n)
2: isFair ← true(size = 10)
3: for i = 0, . . . , 9 do
4: ▷ This loop can be thread parallel. ◁
5: isFair [i]← coinIsFair(n, i)
6: for i = 0, . . . , 9 do
7: if isFair(i) then
8: write(Coin i seems fair.)
9: else

10: write(Coin i seems unfair.)

Related example: How unfair are our coins?

Problem formulation: Our new simulator coinsFlip(p,k) takes
as input a real number p ∈ [0, 1] and a positive integer k > 0.
coinsFlip now contains an unknown number of coins, and p is
the “seed” determining which coin is used. Furthermore, k states
how many times the given coin will be flipped, and coinsFlip
returns the sum of the results of k consecutive coin flips.
Since we no longer know how many coins there are, we now simply
want to determine how likely it is that a given coin is unfair, and
how unfair such a coin is.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 13

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Question 6

How should we test our possibly infinite amount of coins?

Answer

Example program solution:
1: function coinFair(n, p)
2: flips ← zeros(size = n)
3: for i = 1, . . . , n do
4: ▷ This loop can trivially be

made data parallel. ◁
5: flips(i)← coinsFlip(p)
6: return sum(flips)

1: procedure fairTester(n,k)
2: seeds ← rng(size = k)
3: for i = 1, . . . , k do
4: ▷ This loop can be thread parallel. ◁
5: sum[i]← coinFair(n, seeds[i])
6: histogram(range(−n, n), sum)

80 60 40 20 0 20 40 60
Sum of 100 flips for a single coin [n]

0

10000

20000

30000

40000

50000

No
. c

oi
ns

 w
ith

 th
is

fli
p

su
m

 a
fte

r 1
00

 fl
ip

s [
n]

Sum distribution for 1000000 coins flipped 100 times each

Histogram showing the results from an implementation of the previous slide’s pseudocode.
Notice the three slightly overlapping Gaussian distributions, similar to Breit-Wigner peaks in a
momentum distribution. As an estimate, we can normalise the peaks to the sums of the peaks
to get a 58% probability of a fair coin and 21% to get an unfair coin in either direction.

Frameworks and APIs for parallelism

Non-exhaustive list of options

• Multithreading with OpenMP
• Vectorised SIMD CPU instructions
• Explicit heterogeneous APIs
• Portability frameworks/abstraction layers

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 17

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Multithreading loops (with e.g. OpenMP) 101

• Wrap for/do loops in parallel imperative
• Informs compiler that iterations of a block are independent
• OpenMP: Uses comments/pragmas (example from Wikipedia):

int main(int argc, char **argv){
int a[100000];
#pragma omp parallel for
for (int i = 0; i < 100000; i++) {

a[i] = 2 * i;
}
return 0;

}

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 18

https://en.wikipedia.org/wiki/OpenMP
mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Vector instructions (e.g. AVX) 101

• Most modern CPUs have some SIMD instructions implemented
• E.g. gcc has implemented auto-vectorisation since 4.0

• Compiler flag -ftree-vectorize (with some implied sub-flags)
• Implied by -O3 optimisation flag since GCC 4.3
• Implied by -O2 optimisation flag since GCC 12.1
• You might have used auto-vectorisation without knowing it!

• Relies on compiler properly identifying vectorisable blocks
• Make parallel blocks clear (e.g. indexed arrays, public variables const)
• Clarify ownership of variables (restrict keyword, unique ptr)

• Experimental std::simd (C++) for explicit SIMD vectorisation
• (OpenMP: #pragma omp simd directive for explicit SIMD)

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 19

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

CUDA and HIP 101

• Explicit APIs for specific hardware manufacturers5

• CUDA/HIP (primarily) based on C++, can compile C++ code
• Using generic macros translated to specific backends at compile time,
can achieve some level of portability

• Makes distinct separation between host code and device code
• Explicit memory management — allocation, transfer, frees
• Device tasks run exactly as written
• Not portable; needs to be rewritten for each architecture

• Due to historical NVidia dominance, most APIs share CUDA’s structure:
Porting often (but not always) simple

5HIP (AMD) can compile directly to NVidia devices as of recently.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 20

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Portability frameworks 101

• Code wrappers, translates to relevant device behind the scenes
• Examples: alpaka, Kokkos, RAJA, SYCL
• Same code can be compiled for different architectures
• Memory management (partially) handled by the framework
• Framework “translates” code to the relevant form

• The exact form of the compiled code may differ from written
• By construction, portable: Compiles to any supported hardware

• Aims for performance portability; depends on the framework

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 21

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Figure taken from arXiv:2306.15869 without modification (probably outdated). Dark green
means full support, light green partial support or current development, and red no support.

https://arxiv.org/abs/2306.15869

Question 7

When programming for heterogeneous parallel computing,
which framework should I use?

Answer

The one your team is using.

No dominant standard has been established, so use whatever you’re
comfortable with within your restrictions.

Just make sure to keep up to date with the options.

Legacy code

Rewriting existing software with data parallelism

• In reality, we rarely write software from scratch
• Working on existing programs, parallelisation has several stages
• We need to identify which parts are suited for porting
• Then, need to refactor the program and extract that part
• Once extracted, rewrite section for parallel architectures
• ...that’s it, right?

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 25

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Reminder:
Code is never slow until it has been profiled!

Profiling

• Even if a program section is easily parallelised,
there’s no point in rewriting it if it’s not a bottleneck

• Identifying relevant code sections is primarily about profiling
• Only once hotspots are found should you consider
how the code can be accelerated

• Non-exhaustive list of profiling tools I use:
• perf: Sampling, results (proportionally) representative to real runtimes
• Callgrind (Valgrind): Tracing, gives exact instruction counts
• GDB: Debugger, allows for exact program runtime debugging

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 27

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Flame Graph Search ic

xm..

__mint_module_MOD_mint

binothlha_
sb..

ffv1..

sre..

sloopma..

f..

f951

co..

born_

__libc_start_main

sbornsoft_

sloopma..

sreal_bornsoftvirtual_

sigintf_
co..

b..

smatrix_real_

sloopma..

top..

__l..

madevent_mintMC

sborn_sf_

n..
n..

[f..

ffv1_0_
matrix_1_

sborn_splitorders_

compute_real_emission_

sb..
sb..

ffv1..

loop_ct..

bo..

compu..

smatrix1_

_st..

sborn_
include_multichannel_enhance_

main

sr..

vvv..

sbo..

sreal_

sb.. v..smatrix1_splitorders_sb..

f..

sb..

l..

sb..
b..

compute_nbody_noborn_

born_

sbo..

ffv..

_start

compute_..
sr..

sborn_sf_

MAIN__

ge..

__mint_module_MOD_compute_integrand

compute..

main

n..

Refactoring

• Once you’ve identified hotspots, time to factor it out
• Difficulty of this task entirely program dependent:
Can go from trivial to a complete code overhaul

• Essentially, your goal is to put the code you aim to parallelise in
a singular block/loop that can easily be extracted and replaced
with calls to external functions/libraries

• Here you also want to remove dependencies on global variables;
this block should only rely on data you have full knowledge of

• Once this is done, you can actually start porting

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 30

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Running in parallel

• With parallel block separated from the rest of the program,
it’s time to write your parallel code

• For directive-based frameworks (e.g. OpenMP), this is trivial
• Although you will certainly find more errors once you start compiling

• For language extensions, this means rewriting your
block/function using whatever framework you’ve decided on

• Depending on the API, the final code likely looks similar to what
you started with, except you can now run it on your device!

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 31

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Legacy code example, sigint from Flamegraph

1 double precision function sigint(xx,vegas_wgt,ifl,f)

2 ...
3 if (abrv.eq.'real') goto 11

4 nbody=.true.

5 calculatedBorn=.false.
6 call get_born_nFKSprocess(nFKS_picked,nFKS_born)

7 call update_fks_dir(nFKS_born)

8 if (ini_fin_fks(ichan).eq.0) then

9 jac=1d0

10 else
11 jac=0.5d0

12 endif
13 call generate_momenta(nndim,iconfig,jac,x,p)

14 if (p_born(0,1).lt.0d0) goto 12

15 call compute_prefactors_nbody(vegas_wgt)

16 call set_cms_stuff(izero)
17 if (ickkw.eq.3) call set_FxFx_scale(1,p1_cnt(0,1,0))

18 passcuts_nbody=passcuts(p1_cnt(0,1,0),rwgt)

19 if (passcuts_nbody) then

20 pass_cuts_check=.true.

21 call set_alphaS(p1_cnt(0,1,0))

22 call include_multichannel_enhance(1)
23 if (abrv(1:2).ne.'vi') call compute_born

24 if (abrv.ne.'born') call compute_nbody_noborn

25 endif
26 11 continue
27 if (abrv(1:4).eq.'born'.or.abrv(1:4).eq.'bovi'

28 $.or.abrv(1:2).eq.'vi') goto 12

29 nbody=.false.

30 if (sum) then
31 nFKS_min=1
32 nFKS_max=ini_fin_fks_map(ini_fin_fks(ichan),0)

33 MC_int_wgt=1d0

34 else
35 nFKS_min=iran_picked

36 nFKS_max=iran_picked

37 MC_int_wgt=1d0/vol

38 endif

39 do i=nFKS_min,nFKS_max
40 iFKS=ini_fin_fks_map(ini_fin_fks(ichan),i)

41 ...
42 call update_fks_dir(iFKS)

43 call generate_momenta(nndim,iconfig,jac,x,p)

44 if (p_born(0,1).lt.0d0) cycle

45 call compute_prefactors_n1body(vegas_wgt,jac)

46 call set_cms_stuff(izero)
47 if (ickkw.eq.3) call set_FxFx_scale(2,p1_cnt(0,1,0))

48 passcuts_nbody =passcuts(p1_cnt(0,1,0),rwgt)

49 call set_cms_stuff(ione)
50 passcuts_coll=(use_evpr.and.passcuts_nbody).or.passcuts(p1_cnt(0,1,1),rwgt)

51 call set_cms_stuff(mohdr)
52 if (ickkw.eq.3) call set_FxFx_scale(3,p)

53 passcuts_n1body=passcuts(p,rwgt)

54 if (passcuts_nbody .and. abrv.ne.'real') then

55 pass_cuts_check=.true.

56 call set_cms_stuff(izero)
57 call set_alphaS(p1_cnt(0,1,0))

58 call include_multichannel_enhance(3)
59 call compute_soft_counter_term(0d0)

60 call set_cms_stuff(itwo)
61 call compute_soft_collinear_counter_term(0d0)

62 endif
63 if (passcuts_coll .and. abrv.ne.'real') then

64 call set_alphaS(p1_cnt(0,1,1))

65 call set_cms_stuff(ione)
66 call compute_collinear_counter_term(0d0)

67 endif
68 if (passcuts_n1body) then

69 pass_cuts_check=.true.

70 call set_cms_stuff(mohdr)
71 call set_alphaS(p)

72 call include_multichannel_enhance(2)
73 call compute_real_emission(p,1d0)

74 endif
75 enddo
76 ...
77 return
78 end

Exercise: Making code parallel

Problem background

The tabletop RPG system Dungeons & Dragons 5e (5e) allows
player characters (PCs) to go from level 1 up to 20. When facing
an appropriately levelled non-player character (NPC), 5e is balanced
such that PCs’ attacks should hit NPCs roughly 65% of the time,
whereas NPCs’ attacks should hit PCs roughly 45% of the time.
Whether an attack hits or not is determined by the roll of a
20-sided die (d20), although the exact calculation varies between
different PCs and NPCs, as well as their levels.

We’ve developed a game using 5e, and we want to test its balance.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 33

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Test suite

Before sending our game out, we run a test to check the balance.

Our test suite has four different pre-built PCs, each of which can
vary from level 1 through 20. To avoid biasing our tests, we have a
function to choose a random NPC at an input level, which we then
pass to another function that either checks if a given PC hits the
NPC or if the NPC hits a given PC. Due to the stochastic nature of
dice, we use random number generation also here.

The test suite runs this test n times for each combination of
specific PC, PC level, and NPC level, and then plots a heatmap of
the results.

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 34

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Simplified test suite structure

1: procedure testSuite(n)
2: PCs ← {barbarian,cleric,rogue,wizard}
3: hits ← false(4, 20, 20, n)
4: hitRate ← zeros(4, 20, 20)
5: for all class ∈ PCs do
6: for i = 1, . . . , 20 do
7: for j = 1, . . . , 20 do
8: for k = 1, . . . , n do
9: NPC ← randomNPC(i)

10: hits[class, i , j , k]← hitPC(class(i),NPC)
11: hitRate[class, i , j]← sum(hits[class, i , j])/n
12: heatMap(hitRate[class])

Question 8

How should we go about parallelising this program?

Answer

That’s up to you to solve in the exercise session ;)

Exercise information
• A Github repo with implemented code will be posted on Indico
• The code is written in C++ and runs sequentially
• A makefile is included, just write make in the terminal
• (All prerequisites are in the exercise pdf, also on Indico)
• Try to restructure and modify the program to run as parallel as
possible for whatever machine you have available!

• (It is sufficient to use OpenMP on your local machine,
the primary goal is to restructure the code)

• The repo has pre-generated heatmaps for the sequential code:
Check whether you get the same statistics

• (Does the game fulfill our balance criteria?)

Zenny Wettersten (CERN) April 16, iCSC2024 Designing parallel programs 38

mailto:zenny.wettersten@cern.ch
https://indico.cern.ch/event/1334738/contributions/5814273/

Any questions?

home.cern

http://home.cern

	Recap
	Defining parallelism
	Writing parallel programs
	Frameworks and APIs for parallelism
	Legacy code
	Exercise: Making code parallel

