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Simulation is a fundamental part of HEP 
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We need simulations to:
● notice unusual variations and 

new, previously unseen 
phenomena

● measuring processes known for 
being extremely rare

At the same time, simulations are 
computationally expensive, and the 
need is expected to increase!



Our current, trustworthy Simulation Frameworks
Fantastic traction on the 

ground
(adherence to data)

Reliable, can and will do 
the heavy lifting for your 

analysis

You can take lots of 
luggage

(many details)

Steady and accurate
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Can we go faster if we renounce some comforts?

Extremely fast

Great traction on the track
(adherence to data)

Can’t carry many things 
with you!

(less details)
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Machine Learning can be one way to do that!

Use some network (ensemble of 
learnable weights)

Find good Loss function
describing how far is the network 
output from the optimal solution

Update the weights to minimize 
the Loss!
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Outline
Core concepts

Generative Adversarial Networks

Variational Autoencoders

Normalizing Flows

Diffusion Models

Applications to HEP
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Scheme 
from

Lilian Weng’s 
blog post

Generative Models in one slide
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Common building blocks!

Latent space
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Common building blocks!

Generative Models
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Common building blocks!

Synthetic data
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A common strategy for defining the loss

Figure from the OpenAI blog post

(latent space)
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https://openai.com/blog/generative-models/


How a good idea can change a whole field
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Generative Adversarial Networks:
game-theory inspired training dynamic
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Generative Adversarial Networks:
game-theory inspired training dynamic

Generator G:
outputs synthetic 
samples given 
noise as input 
(brings in 
stochasticity)
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Generative Adversarial Networks:
game-theory inspired training dynamic

Discriminator D:
estimates the 
probability of a 
given sample 
coming from the 
real dataset
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Generative Adversarial Networks:
game-theory inspired training dynamic
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Unstable training dynamics:
Mode collapse

Example of mode 
collapse taken from 
arXiv:1611.02163

Training instability (mode collapse)
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https://arxiv.org/abs/1611.02163


Unstable training dynamics: 
vanishing gradients

Example of vanishing 
gradients from 

https://arxiv.org/pdf/1701.
04862 18

When the discriminator is 
perfect:

● D(x_True)->1
● D(x_Gen)->0

L(x)->0!!! 
No improvements



Wasserstein GAN as an improvement to training

Figure taken from 
arXiv:1701.07875
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Loss function now measures the Wasserstein distance 

https://arxiv.org/abs/1701.07875


From Adversarial to Autoencoding
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Autoencoders can be a great starting point

Encoder network: Encodes x into low dimensional representation z!
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Autoencoders can be a great starting point
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Decoder network: Decodes z into original representation x!



Autoencoders can be a great starting point
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Reconstruction 

Loss
Why can’t I use this for generation?



An irregular latent space is useless!
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from
Joseph Rocca’s 

blog post

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


How to regularize the latent space
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AE

Variational
AE

x

x

z = E(x)

z ~ p(z|x) x’ ~ p(x|z)

x’ = D(z)

Probabilistic 
Encoder

Probabilistic 
Decoder



We need to add a term to the loss 
to make it a probabilistic model
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Use Kullback-Leibler divergence to 
quantify the distance between NN 
and “Posterior”

Measures how much information is 
lost if the distribution Y is used to 
represent X.

Total loss = RECO + VAE
= Evidence Lower Bound (ELBO)



Finally, a variational autoencoder!
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Good, flexible 
Latent Space 
Representation

Total loss = RECO 
+ VAE
= Evidence Lower 
Bound (ELBO)
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Known issues affecting latent space and samples

● Mode Collapse
● Blurriness in Outputs
● Complex Training
● Limited Expressiveness

Images from the Enoch Kan’s blog post

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a


Wait, I really liked the idea of learning a pdf!
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Why limit ourselves to just one sample?

from “Why I Stopped Using 
GAN — ECCV 2020”

GAN FLOW
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We define a transform f such that:

The two pdfs are related:

 

x

z

z
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The basic idea: change of variables
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The basic idea: image generation



from Lilian Weng
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The basic idea: complex transforms



Task

Pieces

Learn the f(z) to send                     into the (unknown) data distribution                       

● Basic distribution              , typically Gaussian

● Function called flow f(z) invertible and differentiable, with tractable 
jacobian
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We need just a few building blocks!



Density evaluation

Sampling new data

● Sample from                 (Gaussian, trivial)

● Compute                        (fast)
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The usage is straightforward



Invertible 
transform

Jacobian for 
Volume 

Correction

where       are the parameters of f(z) 
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The loss is explained from the change of 
variables!



Flows building blocks: transformations
Affine:

Splines:
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How do we transform the variables?
Various ways to do it (as long as the 
transformation is invertible!)

Each model is made up of multiple 
transformation blocks

This gives us an expressive final 
transformation with good 
correlations
between variables



Efficient to sample from

Efficient to evaluate 

Highly expressive

Useful latent representation

Straightforward to train
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Normalizing Flows are powerful GMs!



Computation of the Jacobian is hard

Not defined to work for discrete variables!
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Normalizing Flows are flawed GMs!



from Jason Yu
the Jacobian becomes triangular!
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Coupling layers for reducing jacobian 
complexity



From 
arXiv:2001.11235

Apply a Gaussian 
smearing

From discrete data 
to continuous!
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Dequantization can be used on discrete 
variables



Increasing Realism step-by-step
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A Markov-chain approach to generation!

Diffusion Models define 
a Markov chain that 
slowly adds random 
noise to data and then 
learn to reverse

We need to learn a 
model to approximate 
these conditional 
probabilities in order to 
run the reverse 
diffusion process.

Output of NN
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Model in action, pros and cons

Pros: Diffusion models 
are both analytically 
tractable and flexible 

Cons: Diffusion 
models rely on a long 
Markov chain, 
expensive in terms of 
time and compute
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How do I do that??!

An illustration of an 
avocado sitting in a 

therapist’s chair, 
saying ‘I just feel so 
empty inside’ with a 
pit-sized hole in its 

centre. The 
therapist, a spoon, 

scribble notes

DALL·E 3
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Just so you know: text conditioning 

Ramesh et al. 2022

Many approaches

A CLIP (Contrastive 
Language–Image 
Pre-training)  model 
learns to match a latent 
representation of the 
image given the 
associated label

The latent input is given 
to a diffusion decoder

https://arxiv.org/abs/2204.06125


Applications: data generation and beyond!
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           1990             2000           2010             2020             2030

LEP2

Tevatron Run2

LHC
 Run1   Run2  Run3 

(shallow) Neural 
Networks

Boosted Decision Trees

Deep Neural Networks,
Generative Models

Attention and 
LLMAmazing review here:

https://iml-wg.github.io/HEPML-LivingReview/

https://iml-wg.github.io/HEPML-LivingReview/


Flows for end-to-end simulation
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As the CMS FlashSim group, we 
are currently developing this 
type of approach
 
Several orders of magnitude of 
speedup and great accuracy

see https://cds.cern.ch/record/2858890?ln=it 
and https://arxiv.org/abs/2402.13684 

https://cds.cern.ch/record/2858890?ln=it
https://arxiv.org/abs/2402.13684


GAN for unfolding
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https://scipost.org/10.21468/SciPostPhys.8.4.070



VAE for DQM and
anomaly detection

50https://inria.hal.science/hal-03159873/document



Idea: Model PDF of signal and 
background using Normalizing 
Flows

from LHC Olympics 2020

Flows for 
anomaly detection
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Conclusions

Generative models are a powerful tool at our disposal

Different models have specific advantages and 
drawbacks

Widespread adoption in many Physics use-cases and 
convincing results!

No readily available implementations for our problems, 
need to experiment! See you at the exercise?
https://github.com/francesco-vaselli/iCSC-exercise

https://github.com/francesco-vaselli/iCSC-exercise


Citations:
Thanks Lilian Weng!
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Backup
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Autoencoders can be a great starting point

Encode x into low dimensional 
representation!

Encoder network: It translates the 
original high-dimension input into the 
latent low-dimensional code. The 
input size is larger than the output 
size.
Decoder network: The decoder 
network recovers the data from the 
code

Why can’t I use this for generation?
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Reconstruction Loss



An irregular latent space is useless for 
generation!

Problem:
The autoencoder is solely trained to 
encode and decode with as few 
reconstruction loss as possible, no 
matter how the latent space is 
organised. 

Meaningless points in latent space!

Random/useless samples!
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from the 
Joseph Rocca’s 

blog post

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


A graph model shows how we can regularize 
latent space!

We want to map the input into a 
distribution!

Prob encoder: learns to model 
conditional Gaussian dist given x

Prob decoder: learns to model 
mean of likelihood distribution 
given z
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Probabilistic 
Encoder (NN)

Likelihood
(Gaussian w 

fixed cov)

Posterior
(Gaussian)



To train we need a small trick!

The expectation term in the loss 
function invokes generating samples 
from 

Sampling is a stochastic process and 
therefore we cannot backpropagate 
the gradient! To make it trainable, the 
reparameterization trick is 
introduced:
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A single loss is not enough!

Need to map NN output into the posterior

We can use Kullback-Leibler divergence to 
quantify the distance between these two 
distributions (NN vs Posterior)

     measures how much information is 
lost if the distribution Y is used to represent 
X.

Total loss = RECO + VAE
= Evidence Lower Bound (ELBO)

The “lower bound” part in the name comes 
from the fact that KL divergence is always 
non-negative and thus the loss is the lower 
bound of log(p(x))
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Expressive

Admit analytical inverse,
fast to invert AND evaluate

We use ML to learn the optimal 
disposition of points and derivatives

Just one of the possible choices!

Linear transformations (Affine) 
are also used a lot:

f(z)= Wz+b z z

z z
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Splines can be a smart choice for f(z)


