## Generative Machine Learning in HEP: Simulation and beyond



Francesco Vaselli francesco.vaselli@cern.ch

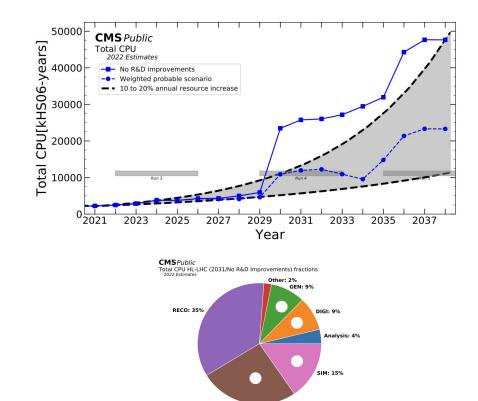


#### Simulation is a fundamental part of HEP

We need simulations to:

- notice unusual variations and new, previously unseen phenomena
- measuring processes known for being extremely rare

At the same time, simulations are computationally expensive, and the need is expected to increase!



RECOSim: 26%

## Our current, trustworthy Simulation Frameworks

Fantastic traction on the ground (adherence to data)

Reliable, *can* and *will* do the heavy lifting for your analysis

You can take lots of luggage (many details)

Steady and accurate



#### Can we go faster if we renounce some comforts?

Extremely fast

Great traction on the track (adherence to data)

Can't carry many things with you! (less details)

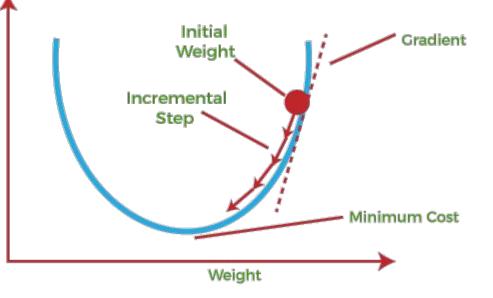


#### Machine Learning can be one way to do that!

Use some network (ensemble of learnable weights)

Find good *Loss function* describing how far is the network output from the optimal solution

Update the weights to minimize the Loss!



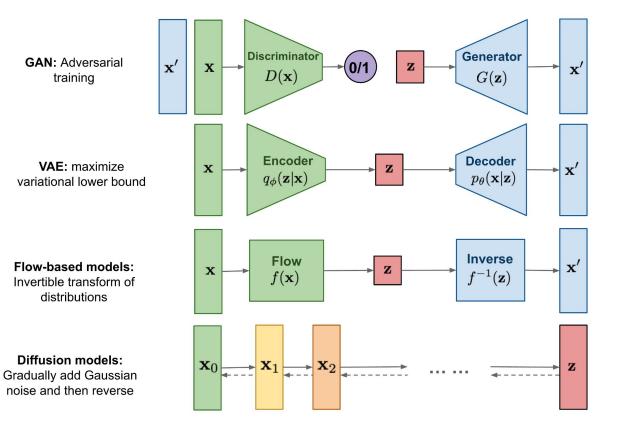
#### Outline

Core concepts

Generative Adversarial Networks Variational Autoencoders Normalizing Flows Diffusion Models

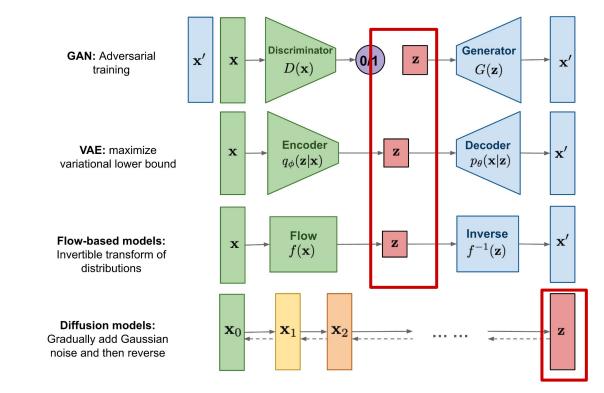
Applications to HEP

#### Generative Models in one slide



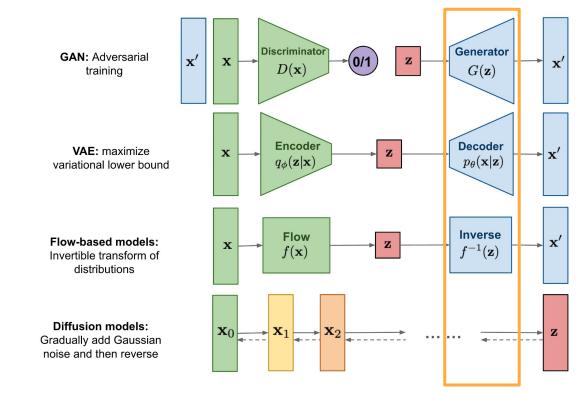
Scheme from Lilian Weng's <u>blog post</u>

# Common building blocks!



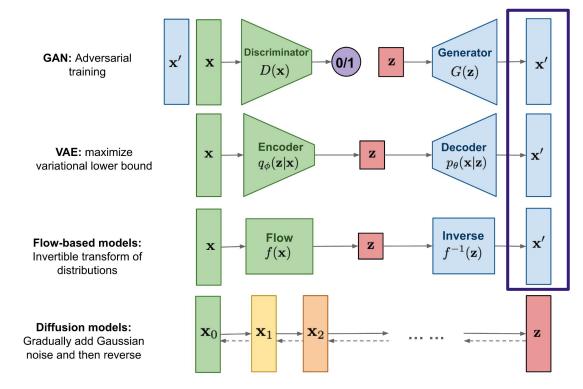
Latent space

# Common building blocks!



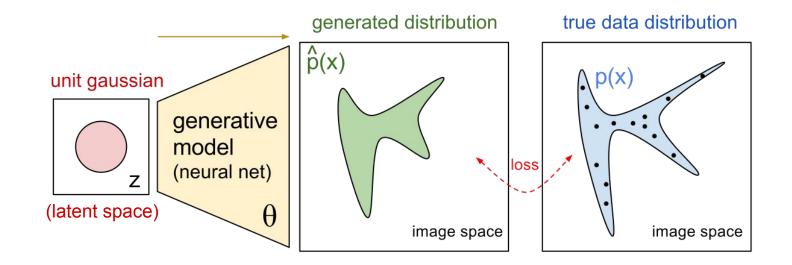
**Generative Models** 

# Common building blocks!



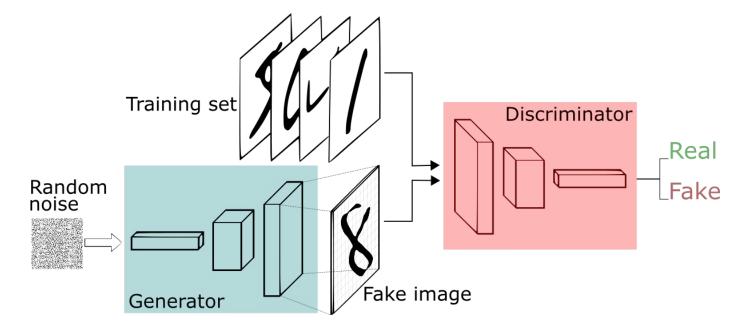
Synthetic data

## A common strategy for defining the loss



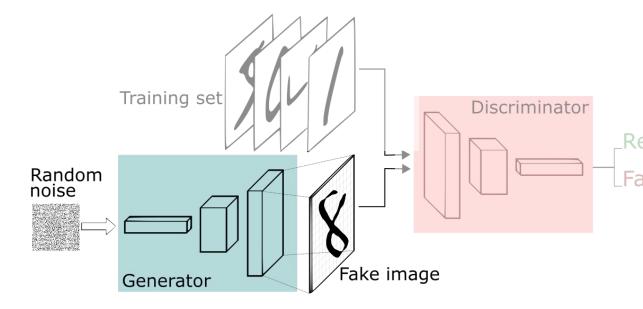
## How a good idea can change a whole field

Generative Adversarial Networks: game-theory inspired training dynamic



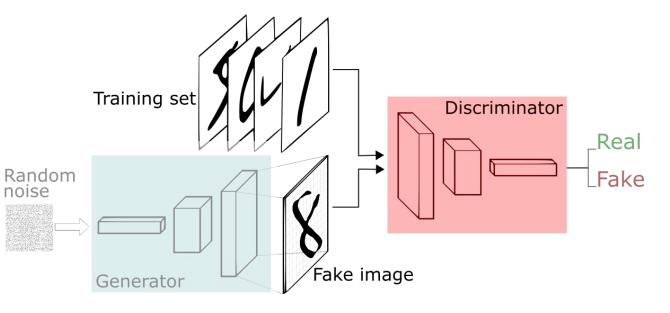
# Generative Adversarial Networks: game-theory inspired training dynamic

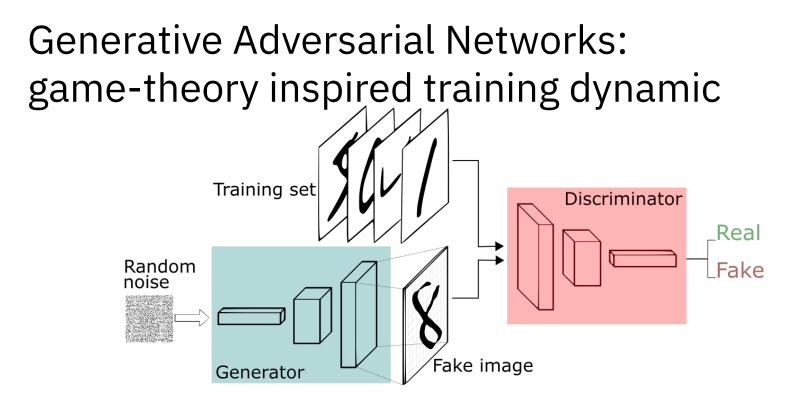
**Generator G**: outputs synthetic samples given noise as input (brings in stochasticity)



# Generative Adversarial Networks: game-theory inspired training dynamic

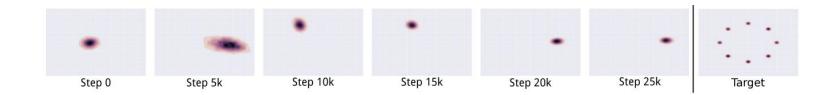
**Discriminator D**: estimates the probability of a given sample coming from the real dataset





 $\min_G \max_D L(D,G) = \mathbb{E}_{x \sim p_r(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$ 

### Unstable training dynamics: *Mode collapse*



#### Training instability (mode collapse)

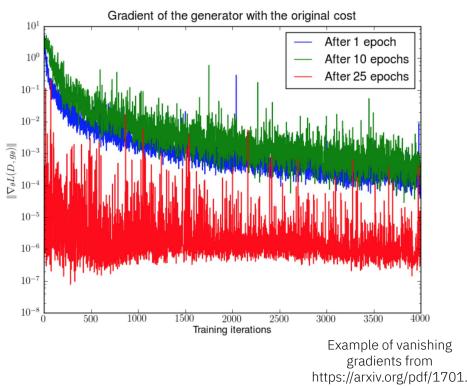
Example of mode collapse taken from <u>arXiv:1611.02163</u>

# Unstable training dynamics: vanishing gradients

When the discriminator is perfect:

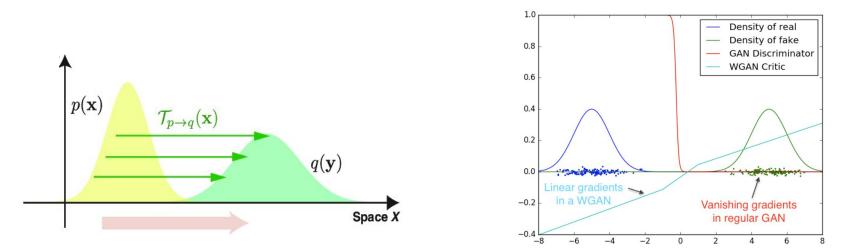
- D(x\_True)->1
- D(x\_Gen)->0

L(x)->0!!! No improvements



04862

#### Wasserstein GAN as an improvement to training

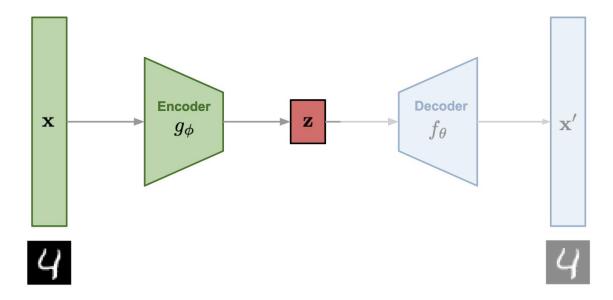


#### Loss function now measures the Wasserstein distance

$$L(p_r, p_g) = W(p_r, p_g) = \max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] - \mathbb{E}_{z \sim p_r(z)}[f_w(g_{\theta}(z))]$$
  
Figure taken from arXiv:1701.07875

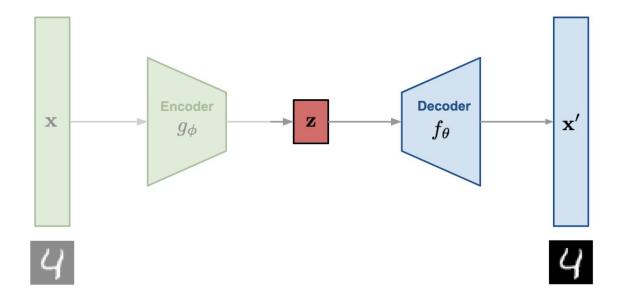
### From Adversarial to Autoencoding

#### Autoencoders can be a great starting point



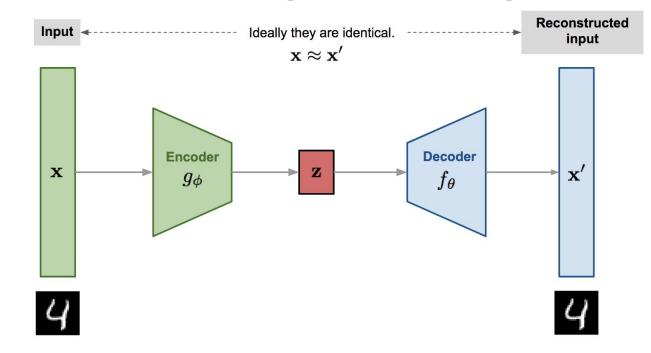
**Encoder network**: Encodes **x** into low dimensional representation **z**!

#### Autoencoders can be a great starting point



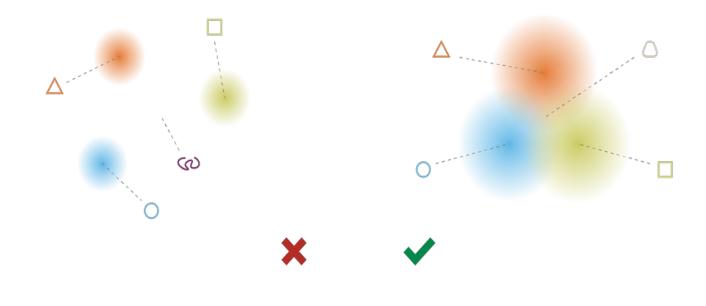
**Decoder network**: Decodes z into original representation x!

#### Autoencoders can be a great starting point



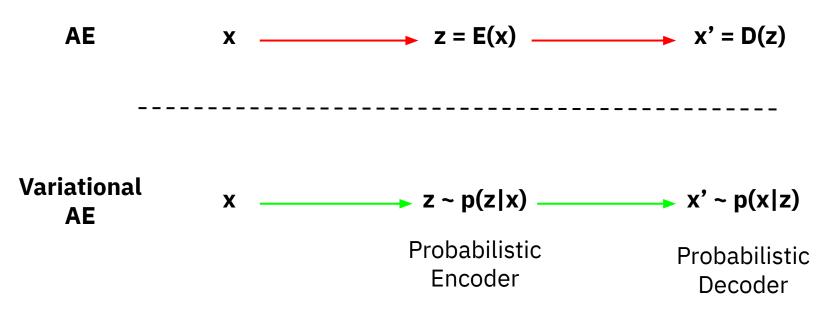
**Reconstruction**  $L_{AE}(\theta, \phi) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}^{(i)} - f_{\theta}(g_{\phi}(\mathbf{x}^{(i)})))^2$  Why can't I use this for generation?

#### An irregular latent space is useless!



from Joseph Rocca's <u>blog post</u>

#### How to regularize the latent space

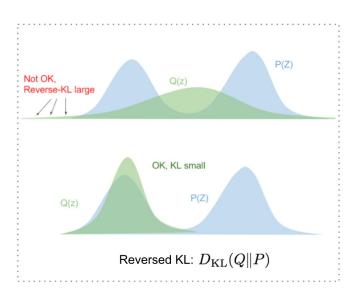


# We need to add a term to the loss to make it a probabilistic model

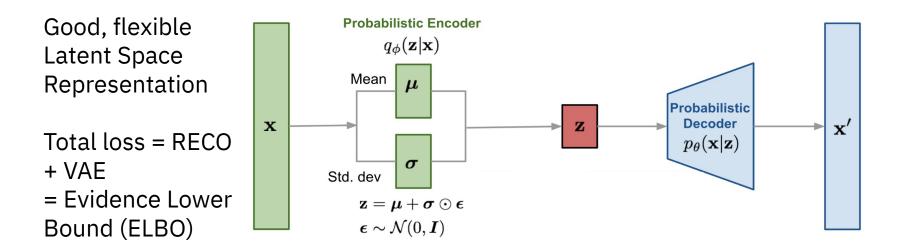
Use Kullback-Leibler divergence to quantify the distance between NN and "Posterior"

Measures how much information is lost if the distribution Y is used to represent X.

Total loss = RECO + VAE = Evidence Lower Bound (ELBO)

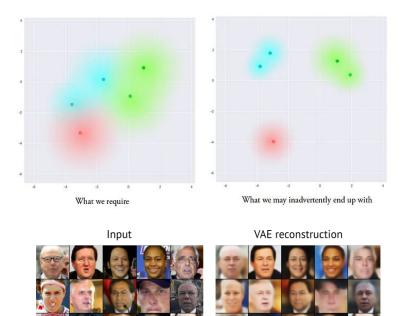


#### Finally, a variational autoencoder!



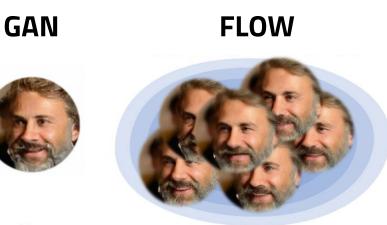
## Known issues affecting latent space and samples

- Mode Collapse
- Blurriness in Outputs
- Complex Training
- Limited Expressiveness



# Wait, I really liked the idea of learning a *pdf*!

#### Why limit ourselves to just one sample?

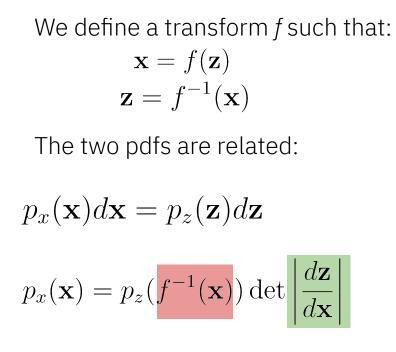


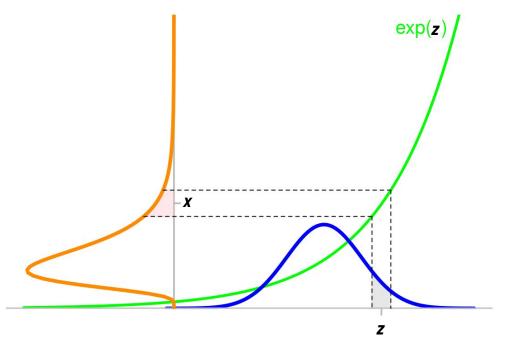
Output: Image

Output: Distribution

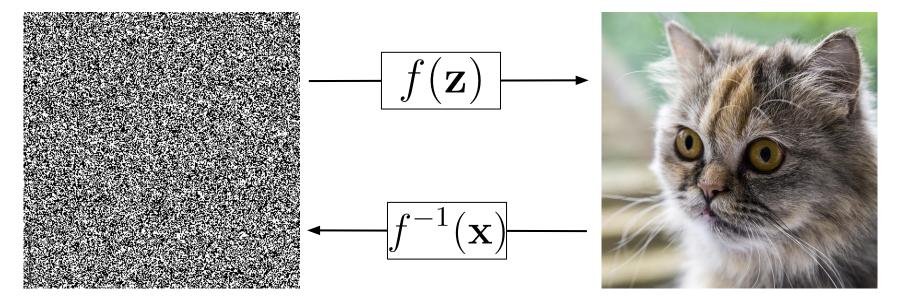
from "Why I Stopped Using GAN — ECCV 2020" 30

#### The basic idea: change of variables



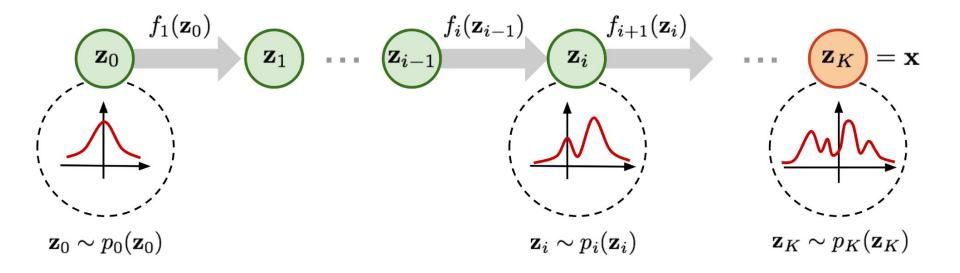


#### The basic idea: image generation



 $p_{\mathbf{x}}(\mathbf{x})$ 

#### The basic idea: complex transforms



from Lilian Weng

# We need just a few building blocks!

Task

Learn the **f(z)** to send  $p_{\mathbf{z}}(\mathbf{z})$  into the (**unknown**) data distribution  $p_{\mathbf{x}}(\mathbf{x})$ 

Pieces

- Basic distribution  $p_{\mathbf{z}}(\mathbf{z})$ , typically Gaussian
- Function called flow *f(z) invertible* and *differentiable*, with *tractable jacobian*

#### The usage is straightforward

Density evaluation

$$p_x(\mathbf{x}) = p_z(f^{-1}(\mathbf{x})) \det \left| \frac{d\mathbf{z}}{d\mathbf{x}} \right|$$

Sampling new data

- Sample from  $p_{\mathbf{z}}(\mathbf{z})$  (Gaussian, trivial)
- Compute  $\mathbf{x} = f(\mathbf{z})$  (fast)

# The loss is explained from the change of variables!

$$p_{x}(\mathbf{x}) = p_{z}(f^{-1}(\mathbf{x})) \det \left| \frac{d\mathbf{z}}{d\mathbf{x}} \right|$$

$$Invertible transform Volume Correction$$

$$\log(p_{x}(x)) = \log(p_{z}(f^{-1}(\mathbf{x}))) + \log(\det \mathbb{J}_{f^{-1}}(\mathbf{x}))$$

 $\mathcal{L}(\phi) = -\mathbb{E}_{p_x^*(\mathbf{x})}[\log(p_z(f^{-1}(\mathbf{x}; \phi))) + \log(\det \mathbb{J}_{f^{-1}}(\mathbf{x}; \phi))]$ where  $\phi$  are the parameters of f(z)

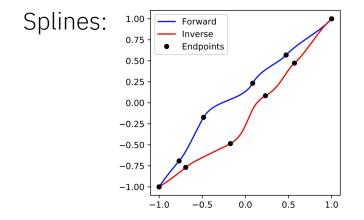
### Flows building blocks: transformations

How do we transform the variables? Various ways to do it (as long as the transformation is invertible!)

## Each model is made up of multiple transformation blocks

This gives us an expressive final transformation with good correlations between variables Affine:

$$\tau(\mathbf{z}_i; \boldsymbol{h}_i) = \alpha_i \mathbf{z}_i + \beta_i$$



### Normalizing Flows are *powerful* GMs!

Efficient to sample from  $p_{\mathbf{x}}(\mathbf{x})$ Efficient to evaluate  $p_{\mathbf{x}}(\mathbf{x})$ 

Highly expressive

Useful latent representation

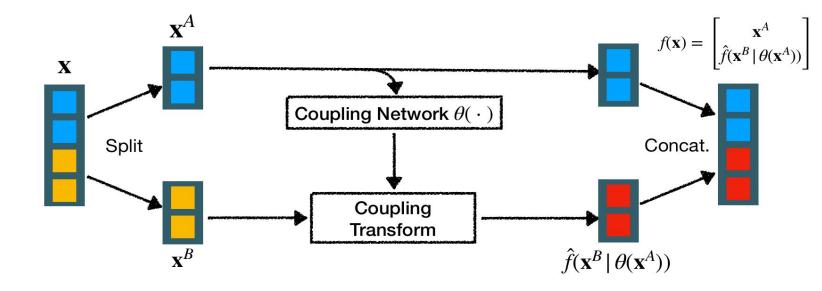
Straightforward to train

### Normalizing Flows are *flawed* GMs!

Computation of the Jacobian is hard

Not defined to work for discrete variables!

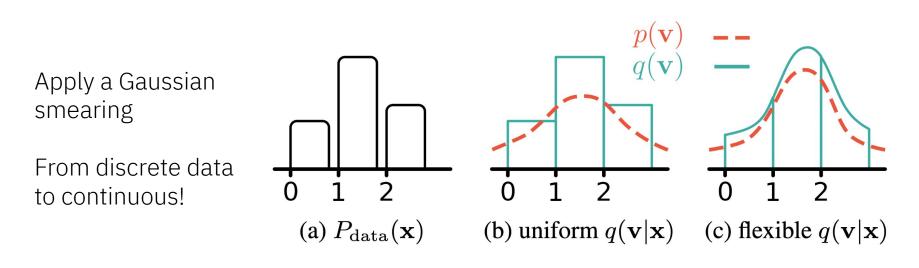
## Coupling layers for reducing jacobian complexity



$$\mathbb{J}_{f}(\mathbf{x};\phi) = \begin{pmatrix} \frac{\partial \vec{x}_{1:d}}{\partial \vec{z}_{1:d}} & \frac{\partial \vec{x}_{1:d}}{\partial \vec{z}_{d+1:D}} \\ \frac{\partial \vec{x}_{d+1:D}}{\partial \vec{z}_{1:d}} & \frac{\partial \vec{x}_{d+1:D}}{\partial \vec{z}_{d+1:D}} \end{pmatrix} = \begin{pmatrix} \mathbb{I} & 0 \\ A & \mathbb{J}^{*} \end{pmatrix} \quad \text{the Jacobian becomes triangular!}$$

from Jason Yu 40

## Dequantization can be used on discrete variables



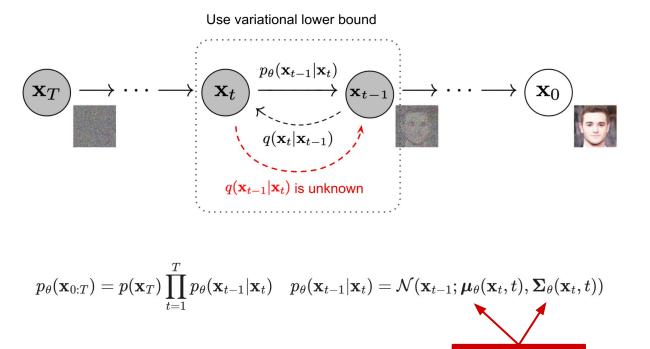
From arXiv:2001.11235

### Increasing Realism step-by-step

### A Markov-chain approach to generation!

Diffusion Models define a Markov chain that slowly adds random noise to data and then learn to reverse

We need to learn a model to approximate these conditional probabilities in order to run the reverse diffusion process.

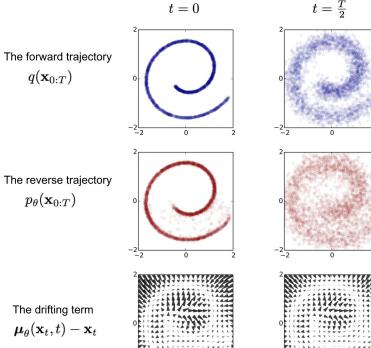


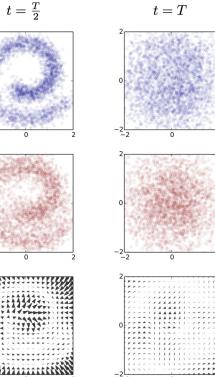
**Output of NN** 

### Model in action, pros and cons

Pros: Diffusion models are both *analytically tractable* and *flexible* 

Cons: Diffusion models rely on a long Markov chain, *expensive* in terms of time and compute

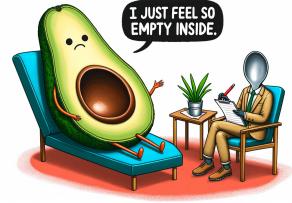




### How do I do *that*??!

An illustration of an avocado sitting in a therapist's chair, saying 'I just feel so empty inside' with a pit-sized hole in its centre. The therapist, a spoon, scribble notes

DALL·E 3 ---

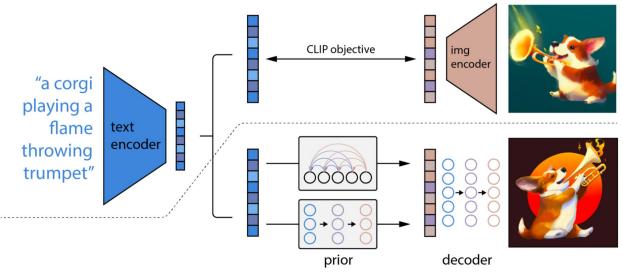


### Just so you know: text conditioning

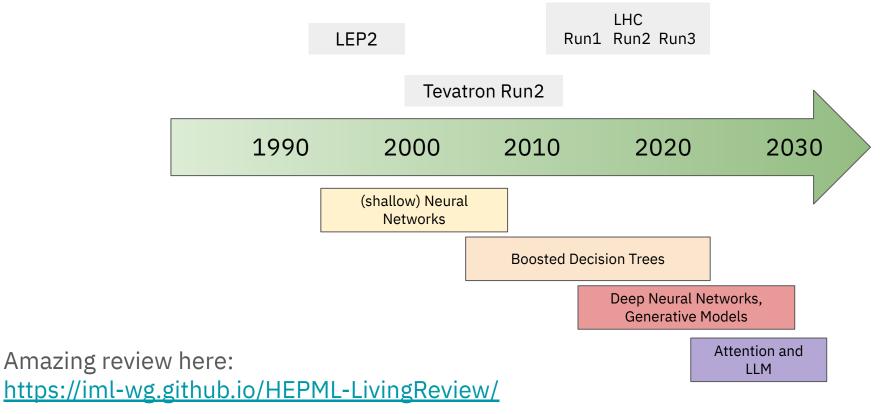
### Many approaches

A CLIP (*Contrastive Language–Image Pre-training*) model learns to match a latent representation of the image given the associated label

The latent input is given to a diffusion decoder



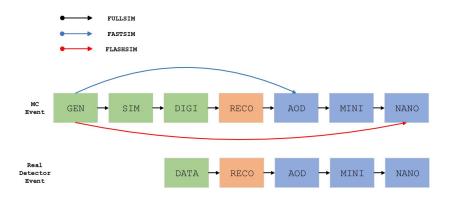
### Applications: data generation and beyond!

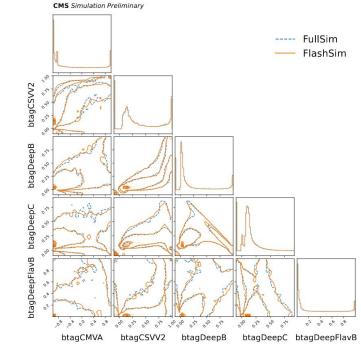


### Flows for end-to-end simulation

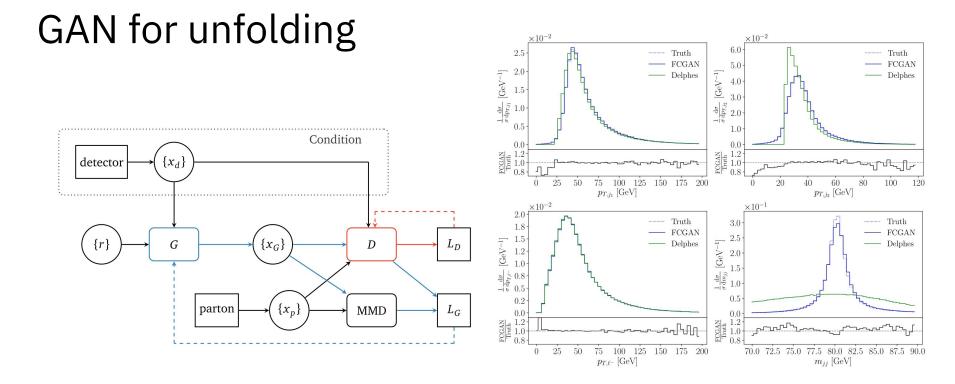
As the CMS FlashSim group, we are currently developing this type of approach

Several orders of magnitude of speedup and great accuracy



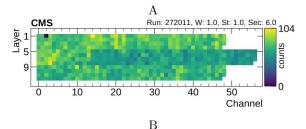


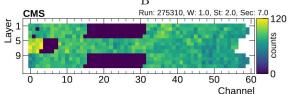
see <u>https://cds.cern.ch/record/2858890?In=it</u> and <u>https://arxiv.org/abs/2402.13684</u>

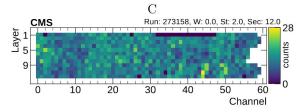


https://scipost.org/10.21468/SciPostPhys.8.4.070

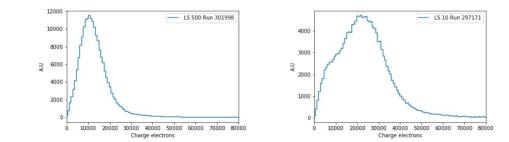
# VAE for DQM and anomaly detection

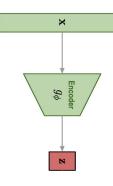


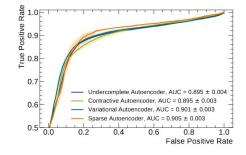




https://inria.hal.science/hal-03159873/document

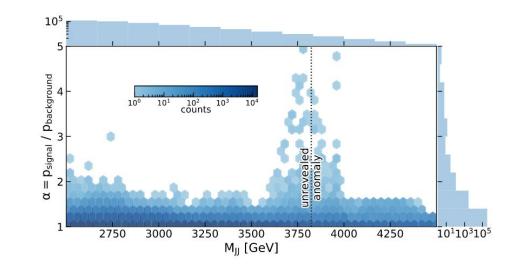


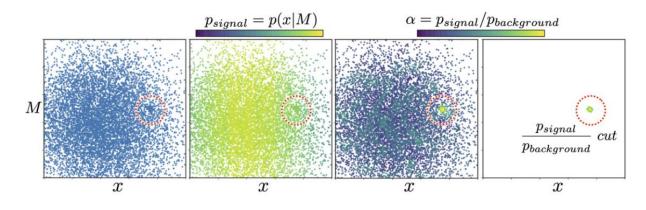




# Flows for anomaly detection

Idea: Model PDF of signal and background using Normalizing Flows





$$p_{bkg} = p(x|M \pm \Delta)$$

from LHC Olympics 2020

### Conclusions

Generative models are a powerful tool at our disposal

Different models have specific advantages and drawbacks

Widespread adoption in many Physics use-cases and convincing results!

No readily available implementations for our problems, need to experiment! See you at the exercise? <u>https://github.com/francesco-vaselli/iCSC-exercise</u>

### Citations: Thanks Lilian Weng!



#### Lilian Weng

OpenAI Verified email at openai.com - <u>Homepage</u> deep learning machine learning network science @article{weng2021diffusion, title = "What are diffusion models?", author = "Weng, Lilian", journal = "lilianweng.github.io", year = "2021", month = "Jul", url = "https://lilianweng.github.io/posts/2021-07-11-diffusion-models/" }

@article{weng2017gan, title = "From GAN to WGAN", author = "Weng, Lilian", journal = "lilianweng.github.io", year = "2017", url = "https://lilianweng.github.io/posts/2017-08-20-gan/" }

@article{weng2018VAE, title = "From Autoencoder to Beta-VAE", author = "Weng, Lilian", journal = "lilianweng.github.io", year = "2018", url = "https://lilianweng.github.io/posts/2018-08-12-vae/"

@article{weng2018flow, title = "Flow-based Deep Generative Models", author = "Weng, Lilian", journal = "lilianweng.github.io", year = "2018", url = "https://lilianweng.github.io/posts/2018-10-13-flow-models/" }

### Backup

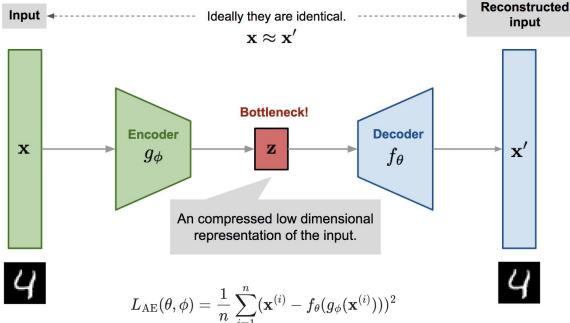
### Autoencoders can be a great starting point

Encode **x** into low dimensional representation!

**Encoder network**: It translates the original high-dimension input into the latent low-dimensional code. The input size is larger than the output size.

**Decoder network**: The decoder network recovers the data from the code

Why can't I use this for generation?



#### **Reconstruction Loss**

from the Joseph Rocca's <u>blog post</u>

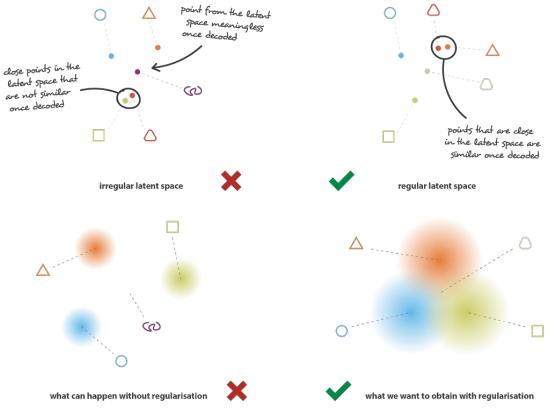
## An irregular latent space is useless for generation!

#### **Problem:**

The autoencoder is solely trained to encode and decode with as few reconstruction loss as possible, no matter how the latent space is organised.

Meaningless points in latent space!

Random/useless samples!



## A graph model shows how we can regularize latent space!

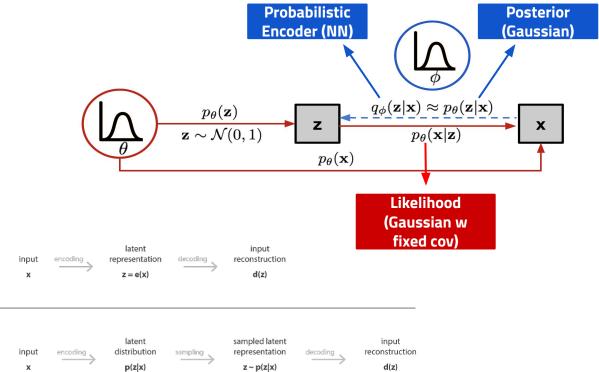
We want to map the input into a distribution!

**Prob encoder**: learns to model conditional Gaussian dist given x

**Prob decoder**: learns to model mean of likelihood distribution given z

simple autoencoders

variational autoencoders

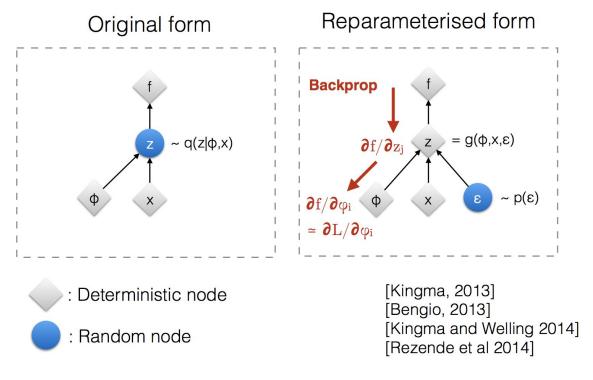


### To train we need a small trick!

The expectation term in the loss function invokes generating samples from  $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$ 

Sampling is a stochastic process and therefore we cannot backpropagate the gradient! To make it trainable, the reparameterization trick is introduced:

$$egin{aligned} \mathbf{z} &\sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) = \mathcal{N}(\mathbf{z}; oldsymbol{\mu}^{(i)}, oldsymbol{\sigma}^{2(i)}oldsymbol{I}) \ \mathbf{z} &= oldsymbol{\mu} + oldsymbol{\sigma} \odot oldsymbol{\epsilon}, ext{ where } oldsymbol{\epsilon} \sim \mathcal{N}(0, oldsymbol{I}) \end{aligned}$$



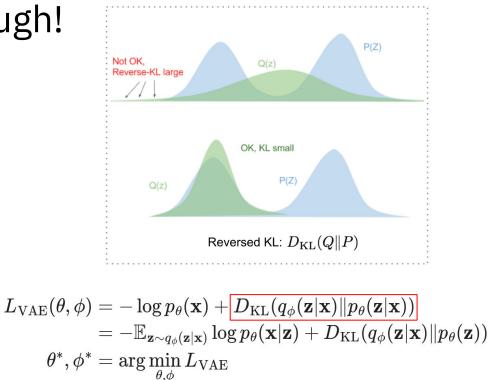
### A single loss is not enough!

Need to map NN output into the posterior

We can use Kullback-Leibler divergence to quantify the distance between these two distributions (NN vs Posterior)  $D_{\rm KL}(X|Y)$  measures how much information is lost if the distribution Y is used to represent X.

> Total loss = RECO + VAE = Evidence Lower Bound (ELBO)

The "lower bound" part in the name comes from the fact that KL divergence is always non-negative and thus the loss is the lower bound of log(p(x))



 $-L_{ ext{VAE}} = \log p_{ heta}(\mathbf{x}) - D_{ ext{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{ heta}(\mathbf{z}|\mathbf{x})) \leq \log p_{ heta}(\mathbf{x})$ 

### Splines can be a smart choice for f(z)

#### Expressive

Admit analytical inverse, fast to invert AND evaluate

We use ML to learn the optimal disposition of points and derivatives

Just one of the possible choices!

Linear transformations (*Affine*) are also used a lot:

f(z) = Wz+b

