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Simulation is a fundamental part of HEP
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At the same time, simulations are
computationally expensive, and the
need is expected to increase!




Our current, trustworthy Simulation Frameworks

Fantastic traction on the
ground
(adherence to data)

Reliable, can and will do
the heavy lifting for your
analysis

You can take lots of

luggage
(many details)

Steady and accurate



Can we go faster if we renounce some comforts?

Extremely fast

Great traction on the track
(adherence to data)

Can’t carry many things
with you!
(less details)




Machine Learning can be one way to do that!

Use some network (ensemble of
learnable weights)

Find good Loss function
describing how far is the network
output from the optimal solution

Update the weights to minimize
the Loss!
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Outline

Core concepts

Generative Adversarial Networks
Variational Autoencoders
Normalizing Flows

Diffusion Models

Applications to HEP



Generative Models in one slide

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Discriminator 7 Generator
x >
D(X) G(z)
x Encoder J z ,@ _
a4 (2[x) po(x|z)
Flow - Inverse
X > > =
f(x) (=)
X0 X ——Xo— .. ... S—
[ - - - --~-1 Tl -—-———-- -

Scheme
from
Lilian Weng’s
blog post
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Common building blocks!

Latent space

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

D(x)

Discriminator

Generator

s Q
- =
\§/ A

% Encoder Z Decoder
74 (2[x)
Flow - Inverse
X _
f(x) (=)
Xo— X1 X2 —— — e Su—




Common building blocks!

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse
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Common building blocks!

Synthetic data

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

D(x)

Discriminator

Generator

s Q
- =
\§/ A

% Encoder Z Decoder N
74 (2[x)
Flow - Inverse
X — _ >
f(x) (=)
Xo— X1 X2 —— — e e —
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A common strategy for defining the loss

unit gaussian

(latent space)

generative

model
(neural net)

generated distribution

true data distribution

A

P(Xx)

image space

. |loss| -

image space

Figure from the OpenAl blog Qgﬁt


https://openai.com/blog/generative-models/

How a good idea can change a whole field
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Generative Adversarial Networks:

game-theory inspired training dynamic

Training set

Random

— 7

Generator

v

N

PReas

—»
—»

Discriminator

O\

Fake image

e {Fa ke
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Generative Adversarial Networks:
game-theory inspired training dynamic

Generator G:
outputs synthetic
samples given
noise as input

(brings in ﬁgirégom /J

—

stochasticity)
Yl —

S

Generator Fake image
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Generative Adversarial Networks:
game-theory inspired training dynamic

Discriminator D:
estimates the
probability of a
given sample
coming from the
real dataset

Training set V /

Fake image

Discriminator

S {Fa ke
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Generative Adversarial Networks:
game-theory inspired training dynamic

Training set

Random
noise

S —

Generator

Discriminator

N\

/ - .I e {Fake

¥

Fake image

minmax L(D, G) = By, ) [log D(2)] + Eop. (9 [log(1 — D(G(2)))]
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Unstable training dynamics:
Mode collapse

- - - -

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Training instability (mode collapse)

Example of mode
collapse taken from
arXiv:1611.02163 17



https://arxiv.org/abs/1611.02163

Unstable training dynamics:
Va nls hlng gr a d [ en tS o | Gradifent ofthe:-generatlorwiththe origina{l cost

— After 1 epoch
10° i\ —  After 10 epochs |
—  After 25 epochs

When the discriminator is 0]

perfect:
e D(x True)->1

10- |

”vdL‘D-!/t%)”

—

L(x)->0!!! o
No im provements 107 500 1000 1500 2000 2300 3000 3300 4000

Training iterations

Example of vanishing
gradients from
https://arxiv.org/pdf/1701.
04862 18



Wasserstein GAN as an improvement to training

1.0 T T
— Density of real
08l — Density of fake |
) ’ — GAN Discriminator
A WGAN Critic
0.6 |
p(x) 0al
Tp-q(X)
> 0.2}
= (¥)
- q y 0.0 . e e e
~
> =02 Vanishing gradients
Space X in regular GAN
-0.4 s ‘ " L ‘ s L
-6 -4 -2 0 2 4 6 8

Loss function now measures the Wasserstein distance

L(pr,pg) = W(pr,pg) = glea%Ewpr [fuw(@)] = Eznp,(z) [fu(g0(2))]

Figure taken from
arxiv:1701.07875



https://arxiv.org/abs/1701.07875

From Adversarial to Autoencoding
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Autoencoders can be a great starting point

Encoder

e B fo x’

Encoder network: Encodes x into low dimensional representation z!
21



Autoencoders can be a great starting point

Decoder
X — .
Joé f0 X

Decoder network: Decodes z into original representation x!
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Autoencoders can be a great starting point

Reconstructed

L e Ideally they are identical. ------------------ > input

X~ x

Reconstruction 1,.(,4) - %znj(x@ —~ folgo(x™))?>  Why can’t I use this for generation?

Loss = 23



An irregular latent space Is useless!


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

How to regularize the latent space

AE X > z=E(x) ~ X’ =D(2)
Varl.';\\tllsonal X z ~ p(z]x) x’ ~ p(x]z)
Probabilistic Probabilistic

EnCOder Decoder
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We need to add a term to the loss
to make It a probabilistic model

Use Kullback-Leibler divergence to
quantify the distance between NN
and “Posterior”

Measures how much information is
lost if the distribution Y is used to
represent X.

Total loss = RECO + VAE
= Evidence Lower Bound (ELBO)

Reversed KL: Dk, (Q||P)
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Finally, a variational autoencoder!

Good, flexible
Latent Space
Representation

Total loss = RECO
+ VAE

= Evidence Lower
Bound (ELBO)

Probabilistic Encoder

q¢(2[x)

Mean u

o

Std. dev

z=p+o@©e
e ~N(0,I)

Probabilistic
Decoder

Po(x|z)
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Known issues affecting latent space and samples

e Mode Collapse

e Blurriness in Outputs R e s P | [ e e ey
e Complex Training Bigreag e
e Limited Expressiveness L. VAE reconstruction

Images from the Enoch Kan’s blog post
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https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a

Wait, I really liked the idea of learning a pdf!

29



Why limit ourselves to just one sample?

GAN

&

Output: Image Output: Distribution

from “Why I Stopped Using
GAN — ECCV 2020” 30



The basic idea: change of variables

We define a transform f such that:
x = [(z)
z=f"(x)

The two pdfs are related:

Pz (xX)dx = p,(z)dz

px(x) = p.(f ' (x)) det

31



The basic idea: image generation

32



The basic idea: complex transforms

fl(ZO) fi(zi—l) fz‘+1(zz')
®- @ - @
/,’ \\\ /,’ \\\ / - b \

/ \ / \ / \
/ \ / \ / \
1 \ ] \ 1 \
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from Lilian Weng s



We need just a few building blocks!

Task
Learn the f(z) tosend  p, (Z) into the (unknown) data distribution px(X)

Pieces

e Basic distribution p,(z), typically Gaussian

e Function called flow f(z) invertible and differentiable, with tractable
jacobian

34



The usage Is straightforward

Density evaluation

px(x) = p.(f(x)) det —

Sampling new data

e Sample from pz(z) (Gaussian, trivial)

e Compute x = f(z) (fast)
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The loss Is explained from the change of
variables!

dz
—1
X) = x)) det | —
Pa(x) = p:(f7(x)) det |-
Invertible Jacobian for
transform Volum'e
Correction

log(pz(x)) = log(p.(f " (x))) + log (det Jy-1(x))

L(¢) = —E,: o [log(p: (' (x; ¢))) + log (det T -1 (x; ¢))]

where gb are the parameters of f(z)
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Flows building blocks: transformations

How do we transform the variables?
Various ways to do it (as long as the
transformation is invertible!)

Each model is made up of multiple
transformation blocks

This gives us an expressive final
transformation with good
correlations

between variables

Affine;

Splines:

1.00 4

0.75 A

0.50 A

0.25 4

0.00 -

—0.25 A

—0.50 A

—0.75 A

—1.00 A
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Normalizing Flows are powerful GMs!

Efficient to sample from  Px (X)
Efficient to evaluate Px (X)
Highly expressive

Useful latent representation

Straightforward to train

38



Normalizing Flows are flawed GMs!

Computation of the Jacobian is hard

Not defined to work for discrete variables!
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Coupling layers for reducing jacobian
complexity

XA

f( Plocx A))

X l
R
/ Coupling Network 6( - ) \I

fx) =

Split l Concat

\AE A Coupling l/
xB

Transform
FxBl o))

8fl:(}l 851:(1
. _ 0Z1.4 0Z411:D
Jf(x> ¢> — | 9%g41.p  O%gy1.D

0%1.4 0Zg41:D

T 0 . .
A 7+) theJacobian becomes triangular!
from Jason Yu 40



Dequantization can be used on discrete
variables

Apply a Gaussian
smearing 4
| £
From discrete data ' —T
to continuous! 0O 1 2 0O 1 2 0O 1 2

(@) Pgata(X) (b) uniform g(v|x) (c) flexible q(v|x)

From
arXiv:2001.11235
41



Increasing Realism step-by-step

42



A Markov-chain approach to generation!

Use variational lower bound

Diffusion Models define
a Markov chain that

Xt—1|%X¢) E
slowly adds random @ ey @ ! @ NN
noise to data and then

learn to reverse _ xt|xt 1)

S _——— -

We need to learn a

model to approximate

these conditional .
probabilities in order to po(Xo:r) = p(xr) HPO(Xt—1|xt) Po(Xt-1]%t) = N (Xs-1; po(Xt, 1), Bo(Xt, 1))

t=1
run the reverse
diffusion process.
43



Model in action, pros and cons

t=0 t=1 =T
The forward trajectory y *"ﬁ % w3
Pros: Diffusion models a(or) ’ F«’\ wg«? AL
are both analytically NS e |
tractable and flexible o
The reverse trajectory FELN
Cons: Diffusion po(xo7) : [ oaf g o
models rely on a long / <
Markov chain, G s i
expensive in terms of N 414777 ST
time and compute The drifing term
B (X¢,t) — Xy
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How do I do that??!

An illustration of an
avocado sitting in a

therapist’s chair,
saying ‘I just feel so
empty inside’ witha — DALL-E3 —>
pit-sized hole in its

centre. The

therapist, a spoon,

scribble notes
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Just so you know: text conditioning

Many approaches

A CLIP (COI’ItI’ClSt[VQ _  CLIPobjective img
- o encoder
Languagg—Image -
Pre-training) model playing a
learns to match a latent flame N N | T
representation of the HNSHIRG | A |-
) ) trumpet elelelele
Image given the )
associated label —18.8-8~
O O
prior

The latent input is given
to a diffusion decoder
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https://arxiv.org/abs/2204.06125

Applications: data generation and beyond!

LHC
LEP2 Runl Run2 Run3
Tevatron Run2
1990 2000 2010 2020 2030

(shallow) Neural
Networks

Boosted Decision Trees

Amazing review here:
https://iml-wg.github.io/HEPML-LivingReview/

Deep Neural Networks,
Generative Models

Attention and
LLM

47


https://iml-wg.github.io/HEPML-LivingReview/

Flows for end-to-end simulation

As the CMS FlashSim group, we
are currently developing this
type of approach

Several orders of magnitude of
speedup and great accuracy

s GEN — SIM — DIGI — RECO — AOD —> MINI — NANO

N W — s

e
DDDDDDD DATA — RECO — AOD —* MINI — NANO

EEEEE

CMS Simulation Preliminary

————— FullSim
—— FlashSim

btagDeepFlavB btagDeepC btagDeepB btagCSVV2

o A} S ) * 4 z {
<4 Yt 7 g4 N 9 \ L A \ i
¥ e \V/ Vv 7 ¥/ 3\ S| |
o i \| [ \ b B \u,/ v ] | s ——— )
N 4 i ( - i H
P PO LR S PP eSS P S o SRR RIS

/ b:angMQVA° §bt;ngSVi/2\ th;gDQee:JB ebt;ngeer:C bt;gl;ee;FravB
see https://cds.cern.ch/record/28588907?In=it
and https://arxiv.org/abs/2402.13684 48



https://cds.cern.ch/record/2858890?ln=it
https://arxiv.org/abs/2402.13684

GAN for unfolding

x10~*
251 dp 0 e Truth 6.0 e Truth
. i —— FCGAN —— FCGAN
T— 20 —— Delphes —— Delphes
B
3, 1.5
gE10
-is
..................................................................................................... 0.5
Condition
detector J_I'I_P———\—u——————\__l—"‘-_,—u—J—“—\_rLl—\_l_L M
0 25 50 75 100 125 150 175 200 0 20 40 60 80 100 12(
.................................................................................................... : prj, [GeV] prj, [GeV]
x10~2 %10-1
RS ™
¢ : ......... Truth 30 P e Truth
( —— FCGAN 58 —— FCGAN
—— D LD —— Delphes " 0 i —— Delphes
> 20
$
) Boqs
1 e
1 B
: =E 10
1 - N\ N
1
' | parton @ MMD Lg :
! L J p
e VR U e e
! : Lpmot e il
L o o e o o o o e e e e e e e e — e o

0 25 50 75 100 125 150 175 200 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0
pre- [GeV] myj; [GeV]

https://scipost.org/10.21468/SciPostPhys.8.4.070
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10°

Flows for S Y

Ly

anomaly detection L C— :
S counts
Idea: Model PDF of signal and :
background using Normalizing 12y E
Flows i b
2750 3000 3250 3500 3750 4000 4250 10'10%10°
M” [GEV]
Psignal = p(le) o= psignal/pband

Pokg = p(x|M £ A)

. l 3
Psigna p.

from LHC Olympics 2020

Pbackground
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Conclusions

Generative models are a powerful tool at our disposal

Different models have specific advantages and
drawbacks

Widespread adoption in many Physics use-cases and
convincing results!

No readily available implementations for our problems,
need to experiment! See you at the exercise?
hitps://aithub.com/francesco-vaselli/iCSC-exercise
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https://github.com/francesco-vaselli/iCSC-exercise
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Backup
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Autoencoders can be a great starting point

Reconstructed

Input <-------ooo Ideally they are identical. ------------------ > input

X~ x’
Encode x into low dimensional

representation!

Er!cpder petwprk: It-trapslate.s the Ee ek
original high-dimension input into the ‘
. . Encoder Decoder
latent low-dimensional code. The X | x!
input size is larger than the output 9é ‘ fo
size.
Decoder network: The decoder

network recovers the data from the An compressed low dimensional
code representation of the input.

Why can’t I use this for generation?

Las(6,6) = — Y (x — fo(ga(x)))?

i=1

Reconstruction Loss
55



An irregular latent space Is useless for
generation! A o

PAce mening

once decoded ess
M”Mmm > /

Problem: ’“:f&iaaea

The autoencoder is solely trained to

encode and decode with as few O

reconstruction loss as possible, no
matter how the latent space is
organised.

irregular latent space x

Meaningless points in latent space!

Random/useless samples!

what can happen without regularisation x

from the
Joseph Rocca's
blog post

O

poinds Hhat are close
inthe Latend space are
similar once decoded

V regular latent space

V what we want to obtain with regularisation 56


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

A graph model shows how we can regularize

latent space! o _

We want to map the input into a

distribution!
po(2) 90 (z|x) =~ po(z]x)
Prob encoder: learns to model A N, D) X
.. . . . Z ~
conditional Gaussian dist given x ) ’ vy
Prob decoder: learns to model
mean of likelihood distribution Likelihood
given z (Gaussian w
latent input flxed COV)
simple input representation reconstruction
autoencoders X z=e(x) d(z)
latent sampled latent input
variational input distribution representation reconstruction
autoencoders X p(z|x) z~plz|x) d(z)
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To train we need a small trick!

The expectation term in the loss
function invokes generating samples

from
z ~ ¢y (2[x)

Sampling is a stochastic process and
therefore we cannot backpropagate
the gradient! To make it trainable, the
reparameterization trick is
introduced:

z ~ qs(z[x) = N(z; u, 6>
z =+ o O e, where e ~ N (0, I)

Original form

- Deterministic node

. : Random node

Reparameterised form

[Kingma, 2013]

[Bengio, 2013]

[Kingma and Welling 2014]
[Rezende et al 2014]
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A single loss is not enough!

Not OK
Reverse-KL large

Need to map NN output into the posterior

We can use|Kullback-Leibler|divergence to
quantify the distance between these two
distributions (NN vs Posterior)

Dy, (X|Y)measures how much information is
lost if the distribution Y is used to represent
X.

OK, KL small

Reversed KL: Dk, (Q|| P)

Total loss = RECO + VAE
= Evidence Lower Bound (ELBO)

Lvag(0, ¢) = —log po(x) +| Dk (94(2(%)||pe(2|x))
The “lower bound” part in the name comes =K, _ lo x|z) - D 7|x 7
from the fact that KL divergence is always -y (%) gpe( ‘ ) KL(%( | )Hpe( ))
non-negative and thus the loss is the lower
bound of log(p(x))

0°,¢" = argmin Lyas

)

—Lyag = log pg(x) — Dxk1(q4(2]x)||ps(z]x)) < log ps(x)
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Splines can be a smart choice for f(z)

Expressive

Admit analytical inverse,
fast to invert AND evaluate

We use ML to learn the optimal
disposition of points and derivatives

Just one of the possible choices!
Linear transformations (Affine)

are also used a lot:
f(z)= Wz+b

—— RQ Spline
Inverse

® Knots

60



