
Generative Machine Learning in HEP:
Simulation and beyond

Francesco Vaselli
francesco.vaselli@cern.ch

Simulation is a fundamental part of HEP

2

We need simulations to:
● notice unusual variations and

new, previously unseen
phenomena

● measuring processes known for
being extremely rare

At the same time, simulations are
computationally expensive, and the
need is expected to increase!

Our current, trustworthy Simulation Frameworks
Fantastic traction on the

ground
(adherence to data)

Reliable, can and will do
the heavy lifting for your

analysis

You can take lots of
luggage

(many details)

Steady and accurate
3

Can we go faster if we renounce some comforts?

Extremely fast

Great traction on the track
(adherence to data)

Can’t carry many things
with you!

(less details)

4

Machine Learning can be one way to do that!

Use some network (ensemble of
learnable weights)

Find good Loss function
describing how far is the network
output from the optimal solution

Update the weights to minimize
the Loss!

5

Outline
Core concepts

Generative Adversarial Networks

Variational Autoencoders

Normalizing Flows

Diffusion Models

Applications to HEP

6

Scheme
from

Lilian Weng’s
blog post

Generative Models in one slide

7

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Common building blocks!

Latent space

8

Common building blocks!

Generative Models

9

Common building blocks!

Synthetic data

10

A common strategy for defining the loss

Figure from the OpenAI blog post

(latent space)

11

https://openai.com/blog/generative-models/

How a good idea can change a whole field

12

Generative Adversarial Networks:
game-theory inspired training dynamic

13

Generative Adversarial Networks:
game-theory inspired training dynamic

Generator G:
outputs synthetic
samples given
noise as input
(brings in
stochasticity)

14

Generative Adversarial Networks:
game-theory inspired training dynamic

Discriminator D:
estimates the
probability of a
given sample
coming from the
real dataset

15

Generative Adversarial Networks:
game-theory inspired training dynamic

16

Unstable training dynamics:
Mode collapse

Example of mode
collapse taken from
arXiv:1611.02163

Training instability (mode collapse)

17

https://arxiv.org/abs/1611.02163

Unstable training dynamics:
vanishing gradients

Example of vanishing
gradients from

https://arxiv.org/pdf/1701.
04862 18

When the discriminator is
perfect:

● D(x_True)->1
● D(x_Gen)->0

L(x)->0!!!
No improvements

Wasserstein GAN as an improvement to training

Figure taken from
arXiv:1701.07875

19

Loss function now measures the Wasserstein distance

https://arxiv.org/abs/1701.07875

From Adversarial to Autoencoding

20

Autoencoders can be a great starting point

Encoder network: Encodes x into low dimensional representation z!
21

Autoencoders can be a great starting point

22

Decoder network: Decodes z into original representation x!

Autoencoders can be a great starting point

23
Reconstruction

Loss
Why can’t I use this for generation?

An irregular latent space is useless!

24

from
Joseph Rocca’s

blog post

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

How to regularize the latent space

25

AE

Variational
AE

x

x

z = E(x)

z ~ p(z|x) x’ ~ p(x|z)

x’ = D(z)

Probabilistic
Encoder

Probabilistic
Decoder

We need to add a term to the loss
to make it a probabilistic model

26

Use Kullback-Leibler divergence to
quantify the distance between NN
and “Posterior”

Measures how much information is
lost if the distribution Y is used to
represent X.

Total loss = RECO + VAE
= Evidence Lower Bound (ELBO)

Finally, a variational autoencoder!

27

Good, flexible
Latent Space
Representation

Total loss = RECO
+ VAE
= Evidence Lower
Bound (ELBO)

28

Known issues affecting latent space and samples

● Mode Collapse
● Blurriness in Outputs
● Complex Training
● Limited Expressiveness

Images from the Enoch Kan’s blog post

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a

Wait, I really liked the idea of learning a pdf!

29

Why limit ourselves to just one sample?

from “Why I Stopped Using
GAN — ECCV 2020”

GAN FLOW

30

We define a transform f such that:

The two pdfs are related:

x

z

z

31

The basic idea: change of variables

32

The basic idea: image generation

from Lilian Weng
33

The basic idea: complex transforms

Task

Pieces

Learn the f(z) to send into the (unknown) data distribution

● Basic distribution , typically Gaussian

● Function called flow f(z) invertible and differentiable, with tractable
jacobian

34

We need just a few building blocks!

Density evaluation

Sampling new data

● Sample from (Gaussian, trivial)

● Compute (fast)

35

The usage is straightforward

Invertible
transform

Jacobian for
Volume

Correction

where are the parameters of f(z)

36

The loss is explained from the change of
variables!

Flows building blocks: transformations
Affine:

Splines:

37

How do we transform the variables?
Various ways to do it (as long as the
transformation is invertible!)

Each model is made up of multiple
transformation blocks

This gives us an expressive final
transformation with good
correlations
between variables

Efficient to sample from

Efficient to evaluate

Highly expressive

Useful latent representation

Straightforward to train

38

Normalizing Flows are powerful GMs!

Computation of the Jacobian is hard

Not defined to work for discrete variables!

39

Normalizing Flows are flawed GMs!

from Jason Yu
the Jacobian becomes triangular!

40

Coupling layers for reducing jacobian
complexity

From
arXiv:2001.11235

Apply a Gaussian
smearing

From discrete data
to continuous!

41

Dequantization can be used on discrete
variables

Increasing Realism step-by-step

42

43

A Markov-chain approach to generation!

Diffusion Models define
a Markov chain that
slowly adds random
noise to data and then
learn to reverse

We need to learn a
model to approximate
these conditional
probabilities in order to
run the reverse
diffusion process.

Output of NN

44

Model in action, pros and cons

Pros: Diffusion models
are both analytically
tractable and flexible

Cons: Diffusion
models rely on a long
Markov chain,
expensive in terms of
time and compute

45

How do I do that??!

An illustration of an
avocado sitting in a

therapist’s chair,
saying ‘I just feel so
empty inside’ with a
pit-sized hole in its

centre. The
therapist, a spoon,

scribble notes

DALL·E 3

46

Just so you know: text conditioning

Ramesh et al. 2022

Many approaches

A CLIP (Contrastive
Language–Image
Pre-training) model
learns to match a latent
representation of the
image given the
associated label

The latent input is given
to a diffusion decoder

https://arxiv.org/abs/2204.06125

Applications: data generation and beyond!

47

 1990 2000 2010 2020 2030

LEP2

Tevatron Run2

LHC
 Run1 Run2 Run3

(shallow) Neural
Networks

Boosted Decision Trees

Deep Neural Networks,
Generative Models

Attention and
LLMAmazing review here:

https://iml-wg.github.io/HEPML-LivingReview/

https://iml-wg.github.io/HEPML-LivingReview/

Flows for end-to-end simulation

48

As the CMS FlashSim group, we
are currently developing this
type of approach

Several orders of magnitude of
speedup and great accuracy

see https://cds.cern.ch/record/2858890?ln=it
and https://arxiv.org/abs/2402.13684

https://cds.cern.ch/record/2858890?ln=it
https://arxiv.org/abs/2402.13684

GAN for unfolding

49

https://scipost.org/10.21468/SciPostPhys.8.4.070

VAE for DQM and
anomaly detection

50https://inria.hal.science/hal-03159873/document

Idea: Model PDF of signal and
background using Normalizing
Flows

from LHC Olympics 2020

Flows for
anomaly detection

51

52

Conclusions

Generative models are a powerful tool at our disposal

Different models have specific advantages and
drawbacks

Widespread adoption in many Physics use-cases and
convincing results!

No readily available implementations for our problems,
need to experiment! See you at the exercise?
https://github.com/francesco-vaselli/iCSC-exercise

https://github.com/francesco-vaselli/iCSC-exercise

Citations:
Thanks Lilian Weng!

53

@article{weng2021diffusion,
 title = "What are diffusion models?",
 author = "Weng, Lilian",
 journal = "lilianweng.github.io",
 year = "2021",
 month = "Jul",
 url = "https://lilianweng.github.io/posts/2021-07-11-diffusion-models/"
}

@article{weng2017gan,
 title = "From GAN to WGAN",
 author = "Weng, Lilian",
 journal = "lilianweng.github.io",
 year = "2017",
 url = "https://lilianweng.github.io/posts/2017-08-20-gan/"
}

 @article{weng2018VAE,
 title = "From Autoencoder to Beta-VAE",
 author = "Weng, Lilian",
 journal = "lilianweng.github.io",
 year = "2018",
 url = "https://lilianweng.github.io/posts/2018-08-12-vae/"
}

@article{weng2018flow,
 title = "Flow-based Deep Generative Models",
 author = "Weng, Lilian",
 journal = "lilianweng.github.io",
 year = "2018",
 url = "https://lilianweng.github.io/posts/2018-10-13-flow-models/"
}

Backup

54

Autoencoders can be a great starting point

Encode x into low dimensional
representation!

Encoder network: It translates the
original high-dimension input into the
latent low-dimensional code. The
input size is larger than the output
size.
Decoder network: The decoder
network recovers the data from the
code

Why can’t I use this for generation?

55
Reconstruction Loss

An irregular latent space is useless for
generation!

Problem:
The autoencoder is solely trained to
encode and decode with as few
reconstruction loss as possible, no
matter how the latent space is
organised.

Meaningless points in latent space!

Random/useless samples!

56

from the
Joseph Rocca’s

blog post

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

A graph model shows how we can regularize
latent space!

We want to map the input into a
distribution!

Prob encoder: learns to model
conditional Gaussian dist given x

Prob decoder: learns to model
mean of likelihood distribution
given z

57

Probabilistic
Encoder (NN)

Likelihood
(Gaussian w

fixed cov)

Posterior
(Gaussian)

To train we need a small trick!

The expectation term in the loss
function invokes generating samples
from

Sampling is a stochastic process and
therefore we cannot backpropagate
the gradient! To make it trainable, the
reparameterization trick is
introduced:

58

A single loss is not enough!

Need to map NN output into the posterior

We can use Kullback-Leibler divergence to
quantify the distance between these two
distributions (NN vs Posterior)

 measures how much information is
lost if the distribution Y is used to represent
X.

Total loss = RECO + VAE
= Evidence Lower Bound (ELBO)

The “lower bound” part in the name comes
from the fact that KL divergence is always
non-negative and thus the loss is the lower
bound of log(p(x))

59

Expressive

Admit analytical inverse,
fast to invert AND evaluate

We use ML to learn the optimal
disposition of points and derivatives

Just one of the possible choices!

Linear transformations (Affine)
are also used a lot:

f(z)= Wz+b z z

z z

60

Splines can be a smart choice for f(z)

