
Advanced git Course
How to git good!

Simone Rossi Tisbeni

Who am I

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 2

Simone Rossi Tisbeni

PhD Data Science and Computation
University of Bologna, INFN

simone.rossitisbeni@unibo.it https://github.com/rsreds

mailto:simone.rossitisbeni@unibo.it
https://github.com/rsreds

●Recap of git basics
● The three areas
● commits, branches and references
● Typical workflow

●Why advanced git
●Useful commands

● The stash
● checkout, switch and restore

●Fixing mistakes
● restore
● reset
● revert

●Advanced merging
● rebase
● cherry-pick

●Reflog
●Rewriting History

● amend
● rebase
● filter-repo

●Git Hooks
●Advanced debugging

● log
● blame
● bisect

Table of Content

Part 1 Part 2

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 3

PART
1

Recap: the three areas

1. Working area
2. Staging area
3. Repository

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 5

Recap: working area

Single checkout of one
version of the project
Contains
• Untracked files
• Tracked and

unchanged files

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 6

Recap: staging area

Also known as index
Files that will be part of
your next commit

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 7

Recap: repository

The .git directory
Contains the files that
git knows:
• Metadata
• Objects data
All ever committed file
versions

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 8

Recap: what is a commit?

A commit points to:
• The packaged data

And contains metadata:
• Author and committer
• Date(s)
• Commit message
• Parent(s) commit

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 9

$ git cat-file -p 9c098
tree a2985758940c9c8eb1fe1e483006cd3e…
parent 701dcc4e2eadbc3054c2585098305b…
author Simone Rossi Tisbeni 1707835791 +0100
committer Simone Rossi Tisbeni 1707836247 +0100

Add new feature

commit tree parent

9c098… a2985… 701dc…
author date message

Simone Rossi
Tisbeni

1707835791
+0100

Add new
feature

Actually, it points to a tree pointing to data blobs

Recap: you can’t “change” commits

The hash of this information is
the commit’s SHA-1

If you change any data, the
commit will have a new hash

The old one is not going to be
removed (for some time)

! The refs to that commit will still
point to the old one

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 10

commit tree parent

9c098… a2985… 701dc…
author date message

Simone Rossi
Tisbeni

1707835791
+0100

Add new
feature

Recap: branches

• A branch is a movable pointer to a commit
• Multiple branches can point to the same commit
• Commits pointing to their parents build the branching

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 11

main

feature

• $ git branch feature
• $ git commit -am "main commit"
• $ git switch feature
• $ git commit -am "feature commit"

Recap: references

Commits in git are indexed with
their SHA-1 values
They are stored in files under
simple names so that they can
be more easily referenced

4 types of references:
• Heads
• Tags
• Stash
• Remotes

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 12

$ find .git/refs --maxdepth 1
.git/refs
.git/refs/remotes
.git/refs/tags
.git/refs/stash
.git/refs/heads

 Branches reside here

Recap: heads
• Points to the last commit in a

branch
• New commits update the

heads

git branch <branch_name>
Create pointer to the SHA-1 of the
last commit of the current branch

HEAD
• HEAD file is a symbolic

reference to the current branch
• It contains a pointer to a head

pointer to a commit

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 13

Recap: tags

• It points to a commit
• Like a branch reference but it

never moves

git tag -a
annotated tag: also contains a
tagger, a date, a message

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 14

$ git tag v.1.4
$ git tag -a v1.5 -m "version 1.5"
$ tree .git/refs/tags/
.git/refs/tags/
├── v1.4
└── v1.5
$ git show v1.5
tag v1.5
Tagger: Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>
Date: Wed Mar 13 12:02:07 2024 +0100

version 1.5

commit a2844e7b5… (HEAD->main, tag:v1.5)
…

Recap: remotes

• Remote repositories are saved
as refs in .git

• refs/remotes
store a pointer to the last known
change for each branch

• Same as refs/heads but
“read-only”:

You can switch to a remote ref,
but commits will be dangling and
will be (at some point) removed

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 15

$ tree .git/refs/remotes/
.git/refs/remotes/
├── fork
│ ├── fix-log-url
│ ├── master
│ └── script-handler
└── origin
 ├── HEAD
 └── main

More on dangling commits and garbage collection in backup slides

Typical workflow: init

• When initialized the repo doesn’t track files by default
• The HEAD will point to an unborn main branch

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 16

$ echo A > file
$ git init
Initialized empty Git
repository in ~/icsc/.git/
$ cat .git/HEAD
ref: refs/heads/main
$ tree .git
.git
├── HEAD
:
└── refs
 ├── heads
 └── tags

file:
v1

Typical workflow: add

• Take the content in the working directory and
add it to the stage

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 17

$ git add file
$ git status
On branch main

No commits yet

Changes to be committed:
 (use "git rm --cached
<file>..." to unstage)
 new file: file

file:
v1

file:
v1

Typical workflow: commit

• Content of the index saved a permanent snapshot.
• Updates main to point to that commit

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 18

$ git commit -m "Initial"
[main (root-commit) 9c59da4]
Initial
 1 file changed, 1
insertion(+)
 create mode 100644 file
$ cat .git/refs/heads/main
9c59da48dac108f810a629084…

file:
v1

file:
v1

file:
v1

Typical workflow: editing tracked files

• Changes in tracked files are not automatically
added to index

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 19

$ echo B > file
$ git status
On branch main
Changes not staged for
commit:
…
 modified: file

no changes added to
commit (use "git add"
and/or "git commit -a")

file:
v1

file:
v2

file:
v1

Typical workflow: skip the staging

• Changes in tracked files are not automatically
added to index

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 20

$ git commit –a –m
"Modify file"
[main 2520012] Modify
file
 1 file changed, 1
insertion(+), 1
deletion(-)

Use carefully

file:
v1

file:
v2

file:
v2

file:
v2

Typical workflow: remote repository

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 21

Typical workflow: all the pieces

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 22

Why advanced git?

We should use Git
• Your colleagues use it
• They expect you to use it
• You work on codebase too large to

maintain without
• More than one version of your codebase

must be supported
• Your work gets faster and easier
• You understand what you are doing

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 23

must
want to

stash

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 24

$ git stash push
Saved working directory and index state
WIP on new_branch: 0e70d3b Add repo
description to README.md

$ git stash pop
On branch new_branch
Changes not staged for commit:
 (use "git add <file>..." to update
what will be committed)
 (use "git restore <file>..." to
discard changes in working directory)
 modified: README.md

no changes added to commit (use "git
add" and/or "git commit -a")

• Stack of independent changes
• Save uncommitted work
• Keep stashed code safe from

destructive operation

stash list

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 25

• Stash items are encoded as
commits

• Reference to the most recent item
in the stack in .git/refs/stash

git stash list
Show previous stashes:
listed in a references log

Repository

Stash

$ git stash list
stash@{0}: WIP on new_branch: 0e70d3b
Add repo description to README.md
stash@{1}: WIP on main: 0e70d3b Add repo
description to README.md
stash@{2}: WIP on main: 5c19be9 Initial
commit

stash options

git provides multiple options for every command
Simple and complete documentation

git stash apply
Like pop, but doesn’t remove the item from the stash

git stash drop
Removes from the stash without applying to working area

git stash --keep-index
Save changes to stash without removing them from the staging area

git stash --include-untracked
Add to stash everything in the working area

git stash branch <branch_name>
Create new branch starting from stashed changes

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 26

https://git-scm.com/docs/git

patch(-p)

• Allows to stash in hunks
• Interactively!
• Usable also in staging

(git add -p)

• Useful when there is too much
in the same commit

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 27

$ git stash –p
…
diff display
…
(1/1) Stash this hunk [y,n,q,a,d,e,?]? ?
y - stash this hunk
n - do not stash this hunk
q - quit; do not stash this hunk or any
of the remaining ones
a - stash this hunk and all later hunks
in the file
d - do not stash this hunk or any of the
later hunks in the file
e - manually edit the current hunk
? - print help

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 28

Saying goodbye to checkout

git checkout is one of the most used command from git
It performs more than one operation
can be difficult to learn: will it do what I want?

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 29

git checkout <filename>
 discards changes and restore state to index
git checkout <branch_name>
 sets HEAD to point to different branch
git checkout <branch_name> -- <filename>
 discards changes and restore state to that in branch
git checkout <commit_sha1>
 sets HEAD to point to that commit, can be DETACHED

! ambiguous if branch name = filename

Set file content

Set file content

Changes HEAD

Changes HEAD

restore and switch
git restore
Set file content
git restore <filename>

discard changes and restore state
to index

--source <branch_name> <filename>
discard changes and restore state
to the content of the branch

git switch
Changes HEAD
git switch <branch_name>

set HEAD to point to a branch
--detached <commit_sha1>

set HEAD to point to a commit
Can’t happen unintentionally

-c <branch_name>
create a new branch and
switch HEAD

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 30

More on restore in backup slides

restore and switch: Reference sheet

checkout Change HEAD to: Which files are changed: switch/restore
git checkout filename No change filename git restore filename

git checkout branch
filename

No change filename git restore --source
branch filename

git checkout branch branch All files in working dir git switch branch

git checkout commit commit All files in working dir git switch --detach
commit

git checkout –b branch branch All files in working dir git switch –c branch

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 31

Fixing mistakes

What to do if we staged the wrong files?
What if we already committed some changes?

How do we turn back our repository to a previous state?

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 32

• git restore
• git reset
• git revert

$ rm -rf .git
$ git clone ...

Fixing mistakes: restore
Remove changes not yet committed
git restore <filename>

replace the working area copy
with the copy from the index

git restore --staged <filename>
unstage file, replacing with the
copy from HEAD

git restore -s <tree> <filename>
replace working area copy with
the copy from the specified
commit, branch or tag

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 33

Warning!
These operations overwrite files in the
staging and/or working area without

asking for confirmation!

Fixing mistakes: reset

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 34

different behaviours:
• “undo” commit, keep the changes staged
• “undo” commit, keep the changes in the working area
• “undo” commit, lose all changes

Fixing mistakes: reset --soft

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 35

git reset --soft HEAD~
Will stop after moving HEAD
With no option it defaults to HEAD~
(the parent of HEAD)

Fixing mistakes: reset --mixed

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 36

git reset --mixed HEAD~
After moving HEAD will update the
index with the new HEAD’s contents
Default behaviour when not specified

Fixing mistakes: reset --hard

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 37

git reset --hard HEAD~
After moving HEAD will update both
the index AND the working area.

! Irreversibly overwrites working area. CANNOT be undone!

More on reset in backup slides

Moving HEAD

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 38

Main

Feature

HEAD

git switch
moves the HEAD but the branch stays

git reset
moves the HEAD and the branch ref

The old commit will
be dangling!Before the command

Fixing mistakes: revert
A safer way to undo changes
git revert

creates a new commit that applies the
opposite of the change introduced in a
commit

The original commit persist!
Revert does not change history

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 39

b39cc8f (HEAD -> main) Add tests
918d81e Add new file to repo
$ git revert 918d
[main 02af80e] Revert "Add new file to
repo"
 1 file changed, 0 insertions(+), 0
deletions(-)
 delete mode 100644 file
$ git log --oneline
02af80e (HEAD -> main) Revert "Add new
file to repo"
b39cc8f Add tests
918d81e Add new file to repo

PART
2

Merge

Merging is Git's way of putting a
forked history back together
again.

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 41

$ git merge feature

Merge (contd.)

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 42

Performs a 3-way merge between
the two latest snapshots
Creates a new commit
$ git merge feature
Merge made by the 'ort' strategy.
index.html | 1 +
1 file changed, 1 insertion(+)
$ git log -n1
commit 5d1870609ce76… (HEAD -> main)
Merge: e63e713 fd8dc20
…
 Merge branch 'feature'

! The new commit will point to 2 parents

Can merge more than 2 branches

Rebase

• git rebase
Takes the commit from one branch and replays them on a different branch

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 43

$ git log --oneline --all --graph
* e2610ab (HEAD->feature) Add second file
* 58e5b2c Add first file
| * 8eb64bc (main) Add file to main
|/
* 0e70d3b Add repo description
* 5c19be9 Initial commit

Rebase

• git rebase
Takes the commits from one branch and replays them on a different branch

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 44

$ git rebase main
First, rewinding head to replay your work
on top of it...

Rebase

• git rebase
Takes the commits from one branch and replays them on a different branch

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 45

$ git rebase main
First, rewinding head to replay your work
on top of it...
Applying: Add first file

Rebase

• git rebase
Takes the commits from one branch and replays them on a different branch

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 46

$ git rebase main
First, rewinding head to replay your work
on top of it...
Applying: Add first file
Applying: Add second file

! The old commits now are dangling

Fast-forward

When no divergent work exists
Moves the branch pointer to the other’s commit location
Doesn’t create a merge commit

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 47

$ git switch main
$ git merge feature --ff
Updating 8eb64bc..9c0984f
Fast-forward
 file 1 | 0
 file 2 | 0
 2 files changed, 0 insertions(+), 0
deletions(-)

Merge vs Rebase

When to use merge

• When you want a clear record
of what happened in your
repository

• When you want to manually
address conflicts

• For long-term branches
! When you are collaborating

and already pushed changes

When to use rebase

• When you want to show a
streamlined history of changes

• When you have short (feature)
branches

• When you need to merge the
changes back to original branch

! Rebased remote branches
requires push --force

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 48

cherry-pick
git cherry-pick

take the change introduced in a
commit and try to re-introduce it
on the current branch

• Allows to keep a linear history
when merging small changes

• It creates a new commit

• Practically the opposite of
revert

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 49

!same patch, different date = different SHA-1

reflog
• Background log of HEAD and

branches’ references
• Few months of history
• Resides in .git/logs/
• Local only!
• Alias for
git log -g --oneline

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 50

$ git reflog
9c0984f (HEAD -> main, feature) HEAD@{0}:
merge feature: Fast-forward
8eb64bc HEAD@{1}: checkout: moving from
feature to main
9c0984f (HEAD -> main, feature) HEAD@{2}:
rebase finished: returning to
refs/heads/feature
9c0984f (HEAD -> main, feature) HEAD@{3}:
rebase: Add new feature
701dcc4 HEAD@{4}: rebase: Add file B
8eb64bc HEAD@{5}: rebase: checkout main
e2610ab HEAD@{6}: commit: Add new feature
58e5b2c HEAD@{7}: commit: Add file B
5d18706 HEAD@{8}: checkout: moving from
main to feature
e63e713 HEAD@{9}: commit (amend): Add
content to test

reflog: missing references

• reflog keeps track of commits
without references

Deleted branches
Following reset
Orphaned commits

• Why only changes to working
area are truly irreversible

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 51

88207e5 (HEAD -> unstable) Add file_2
57cbedc Add file_1
9c0984f (main) Add new feature
8eb64bc Add file to main
$ git branch –D unstable
Deleted branch unstable (was 88207e5).
$ git log --oneline
9c0984f (HEAD -> main) Add new feature
8eb64bc Add file to main
$ git reflog
88207e5 HEAD@{1}: commit: Add file_2
57cbedc HEAD@{2}: commit: Add file_1
9c0984f (HEAD -> main) HEAD@{3}: checkout:
moving from main to unstable

@{…} reference

HEAD@{2}
the value of HEAD 2 steps prior

You can use to see where a
branch was some time ago:

main@{yesterday}
HEAD@{2.months.ago}

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 52

$ git show main@{1.week.ago}
commit e63e713b280daa51edf2549d20fd4f0…
Author: Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>
Date: Wed Feb 7 14:07:23 2024 +0100

 Add content to test

Rewriting history: amend
When you realize you have missed something in the latest commit
git commit --amend

Create new version of the most recent commit. Old one stays dangling.

• Loads the previous commit message in editor
• If present, will add staged changes to commit
! It will ALWAYS change the SHA-1 of the commit

git commit --amend --no-edit
For trivial commit that don’t need changes in message

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 53

Rewriting history: rebase
When you need to rewrite multiple commits
• rebase allows you to replay commits
git rebase -i

launches rebase interactively
• Can stop after each commit, to allow you to edit it

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 54

$ git log HEAD~3..HEAD --oneline
5856c7c (HEAD -> main) Add new feature
701dcc4 Add file B
8eb64bc Add file A to main

Accepts as argument the parent of the last
commit you want to edit
git rebase -i HEAD~3
 Rebase 3 commits: in the range HEAD~3..HEAD
git rebase -i 8eb64^
 Rebase 3 commits: from 8eb64’s parent (excluded)

Rewriting history: rebase todo list

• Interactive rebase opens the
editor with a list of commands

<command> <commit> <message>
• “script” of commands to be

played
• Commits listed in the opposite

direction of log
• Save and close the editor to run

the script

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 55

pick 8eb64bc Add file A to main

pick 701dcc4 Add file B

pick 5856c7c Add new feature

Rebase 5d18706..5856c7c onto 5d18706 (3
commands)

#

Commands:

p, pick <commit> = use commit

...

Rewriting history: rebase options
• pick

use (replay) this commit
• reword

use commit, but stop to edit message
• edit

use commit, but stop to amend
• squash

use commit, but combine with previous, stop to edit message
• fixup

like squash, but keep the previous commit message
• exec <command>

run an arbitrary shell command
• break, drop, label, reset, merge

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 56

Rewriting history: rebase interrupted

• You can put a break in a rebase to drop you to the command line
• Stops also when a command fails or when there is a conflict
git rebase --continue
 will proceed through the list of commands after the break
git rebase --abort
 will interrupt and return the repo to the state it was before
git rebase --edit-todo
 allows to make changes to the todo list during rebase

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 57

Do not rebase commits that exist outside your repository and
that people may have based work on.

If you follow that guideline, you’ll be fine. If you don’t, people
will hate you, and you’ll be scorned by friends and family.

- the official git documentation

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 58

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 59

Force push with lease

A safer alternative to traditional force push

git push --force-with-lease
Pushes only if the remote ref has not changed

! Still better not to force push: it will not consider other people’s
work that has been based on the changes to be overwritten

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 60

Rewriting history: the hard way

Git provides an in-built tool to alter the repo’s history in drastic way
git filter-branch
• rewrite a large number of commits in a scriptable way
• can easily modify metadata

! no longer recommended by Git

Replaced by the git-filter-repo python tool
https://github.com/newren/git-filter-repo

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 61

https://github.com/newren/git-filter-repo

Rewriting history: git filter-repo

Single file python script
Faster and safer* than git filter-branch for large repositories

Allows to
• Filter commits based on author, date, file path,…
• Move files or directories, rename branches
• Remove data completely from the entire history

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 62

Still a highly destructive operation!

Rewriting history: filter-repo warnings

! Rewriting history can break builds, references, and integrations
! Rewritten history cannot be easily reverted
! Don’t use it if other people have based work off of the repo!

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 63

$ git filter-repo --replace-text
replacements.txt
Aborting: Refusing to destructively
overwrite repo history since this does
not look like a fresh clone.
 (expected at most one entry in the
reflog for HEAD)
Please operate on a fresh clone instead.
If you want to proceed anyway, use --
force.

Backup your work
Work on a clean copy of the repo
Test your rewrites rigorously
before applying to original

Rewriting history: removing sensitive data

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 64

2a0f46a (HEAD -> main) Removed secret file

diff --git a/secret b/secret

deleted file mode 100644

…

-token: ABC123DEF456

-username: srossiti

b1a8053 Removed my password

diff --git a/secret b/secret

…

 token: ABC123DEF456

 username: srossiti

-password: dolphin

6af6473 Add token to secret file
diff --git a/secret b/secret

…

+token: ABC123DEF456

 username: srossiti
 password: dolphin

ef2850 Add secret file
diff --git a/secret b/secret

new file mode 100644

…

+username: srossiti

+password: dolphin

Rewriting history: removing sensitive data

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 65

$ echo dolphin > replacements.txt

$ git filter-repo --replace-text
replacements.txt
Parsed 18 commits
New history written in 0.04 seconds; now
repacking/cleaning...
Repacking your repo and cleaning out old
unneeded objects
HEAD is now at a2844e7 Removed secret file
Enumerating objects: 40, done.
Counting objects: 100% (40/40), done.
Delta compression using up to 8 threads
Compressing objects: 100% (33/33), done.
Writing objects: 100% (40/40), done.
Total 40 (delta 14), reused 0 (delta 0),
pack-reused 0
Completely finished after 0.10 seconds.

a509aab Removed my password

diff --git a/secret b/secret

…

 token: ABC123DEF456

 username: srossiti

-password: ***REMOVED***

…
ef2850f Add secret file
diff --git a/secret b/secret
new file mode 100644
…

+username: srossiti

+password: ***REMOVED***

--replace-message to modify commit’s messages

Rewriting history: removing sensitive data

Replace dolphin with ***REMOVED***
Replace foo with bar
Replace lines containing 666 with a
blank line
The word driver with pilot (but not
drivers)
Replace the exact text MM/DD/YYYY
with YYYY-MM-DD
Replace date of the form MM/DD/YYYY
with the form YYYY-MM-DD

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 66

$ cat replacements.txt

dolphin

foo==>bar

glob:*666*==>

regex:\bdriver\b==>pilot

literal:MM/DD/YYYY==>YYYY-MM-DD

regex:([0-9]{2})/([0-9]{2})/([0-
9]{4})==>\3-\1-\2

Rewriting history: changing author
• Replace wrong email and/or

username
• Uses a mailmap file

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 67

$ cat mailmap

Name <email@addre.ss>

<new@ema.il> <old1@ema.il>

New Name <new@ema.il> <old2@ema.il>

New Name <new@ema.il> Old Name <old3@ema.il>

$ git log --pretty="%h %an <%ae>"

a3f82d7 Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>

49a6711 Simone Rossi Tisbeni
<private@email.it>

82ac0e8 Simone Rossi Tisbeni
<private@email.it>

ef2850f Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>

5856c7c Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>

https://git-scm.com/docs/gitmailmap

Rewriting history: changing author

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 68

$ git log --pretty="%h %an <%ae>"

a2844e7 Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>

a509aab Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>

60c4622 Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>

ef2850f Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>

5856c7c Simone Rossi Tisbeni
<simone.rossitisbeni@unibo.it>

$ git filter-repo --mailmap mailmap
Parsed 18 commits
New history written in 0.02 seconds; now
repacking/cleaning...
Repacking your repo and cleaning out old
unneeded objects
HEAD is now at a2844e7 Removed secret file
Enumerating objects: 40, done.
Counting objects: 100% (40/40), done.
Delta compression using up to 8 threads
Compressing objects: 100% (20/20), done.
Writing objects: 100% (40/40), done.
Total 40 (delta 14), reused 36 (delta 13),
pack-reused 0
Completely finished after 0.06 seconds.

Rewriting history: removing large binaries

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 69

$ git log --oneline

54275a3 (HEAD -> main) Ops, removed large
binary

2a20afa Add a new thing
701dcc4 Add file B
8eb64bc Add file A to main
$ git filter-repo --analyze
Processed 8 blob sizes recursively:
".git/filter-repo/analysis"
Processed 20 commits
Writing reports to .git/filter-
repo/analysis...done.

$ head .git/filter-repo/analysis/path-all-
sizes.txt
=== All paths by reverse accumulated size
===
Format: unpacked size, packed size, date
deleted, path name

 10485760 45791 2024-02-21 large.bin
 116 120 <present> README.md
 0 9 <present> A
 0 9 2024-02-07 feature
 0 9 <present> B

Rewriting history: removing large binaries

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 70

$ git filter-repo --invert-path --path large.bin
Parsed 20 commits
New history written in 0.01 seconds; now
repacking/cleaning...
Repacking your repo and cleaning out old
unneeded objects
HEAD is now at a2844e7 Removed secret file
Enumerating objects: 40, done.
Counting objects: 100% (40/40), done.
Delta compression using up to 8 threads
Compressing objects: 100% (19/19), done.
Writing objects: 100% (40/40), done.
Total 40 (delta 14), reused 40 (delta 14), pack-
reused 0
Completely finished after 0.06 seconds.

$ git log --oneline

701dcc4 (HEAD -> main) Add file B
8eb64bc Add file A to main

$ head .git/filter-repo/analysis/path-
all-sizes.txt
=== All paths by reverse accumulated
size ===
Format: unpacked size, packed size, date
deleted, path name

 116 120 <present> README.md
 0 9 <present> A
 0 9 2024-02-07 feature
 0 9 <present> B

Git Hooks

Scripts that runs when a git event occurs
• Located in .git/hooks
• With git init some .sample hooks are created by default
• Any executable script will work
• Can be manually run with

git hook run <hook-name> -- <hook-arguments>
• Hooks are all run from the root of the working area

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 71

Git Hooks: committing hooks

• pre-commit
Run first, before the message is typed. Exiting non-zero aborts the commit.
i.e. Check code format, lint, tests…

• prepare-commit-msg
Before the editor, after the default message is created.
i.e. programmatically edit templated commit (merge, squash, amends…)

• commit-msg
After the commit message is written. Exiting non-zero aborts the commit.
i.e. validate the commit message format

• post-commit
After the entire commit process is completed.
i.e. notification, logging…

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 72

Git Hooks: client-side hooks
• pre-rebase

Runs before any rebase. Exiting non-zero aborts the rebase.
i.e. disallow rebase on unsafe conditions

• post-merge
Runs after a successful merge.
i.e. restore data untracked by git, permissions…

• post-checkout
Runs after checkout and switch.
i.e. auto show diffs, move data untracked by git…

• pre-push
Runs during push, after the remote has been update, but before any transfer.
Exiting non-zero aborts the push.
i.e. run tests before push, prevent force push

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 73

Git Hooks: server-side hooks

These hooks are handled from the receiving repository (server)

• pre-receive
Run when handling a push from a client. Exiting non-zero aborts the push

• update
As with pre-receive but once for every branch pushed. Exiting non-zero rejects
only one reference at a time

• post-receive
After the entire push is completed.

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 74

Sample Hook: disallow unsafe rebase

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 75

$ cat .git/hooks/pre-rebase
#!/bin/sh
branch="$2"
[-n "$branch"] || branch=`git rev-parse
 --abbrev-ref HEAD`

if git config init.defaultBranch > /dev/null; then
 main_branch=$(git config init.defaultBranch)
else
 main_branch="master"
fi

if ["$branch" = "$main_branch"]; then
 echo “Rebase on $main_branch branch is not
allowed."
 exit 1
fi

$ chmod -x .git/hooks/pre-rebase

$ git rebase -i HEAD~2

Rebase on main branch is not allowed.

fatal: The pre-rebase hook refused to
rebase.

log
git log

the basic command that shows you the history of your repository

Its functionalities are extended by many options
git log --pretty=<format>
 Allows to print logs with different formats
 i.e. oneline, full, reference, custom…
git log --graph
 draw a text-based graphical representation of the branches

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 76

log: partial display

Revision range
Defaults to show the entire
history up to HEAD
Specify a range as argument:
• HEAD~2..HEAD
• origin..HEAD
• main..feature
…

Commit limiting
By default, shows all commit
visible in range
• -n 5
• --since=yesterday
• --before=2.weeks.ago
• --author="Simone Rossi"
• --grep "#\d+"
…

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 77

log: searching

If you are interested in when code was introduced or changed

git log -S string
will show all commits where string was added (or removed)

git log -L 10,20:file
will show the evolution of lines 10 to 20 of file

git log -L:myFunction:file
will show the evolution of the function that matches the regex in file.
It will try to find the boundaries of the function.

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 78

blame
git blame filename

Used to tell the author and date of the last changes in a file

git blame HEAD~2 -- filename
You can specify a point in the history (commit, branch, …)

-L
restrict the changes to specific lines

-M
Tracks line moved within the file, blaming the original author

-C
Tracks lines moved between files, in the same commit
In the first commit the file appear
In any other commit

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 79

-C -C

bisect
git bisect start HEAD known_good_commit

To start a binary search to find an issue
Git will checkout the middle commit test and keep looping until it finds the first
bad commit.
git bisect bad

To mark a non-working commit as bad
git bisect good

To mark a known working commit as good
git bisect reset

Will stop the cycle and reset your HEAD
git bisect run test.sh

Will automatically run the test.sh script until it finds the first that exit non-zero.

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 80

Useful link

Pro Git:
https://git-scm.com/book/en/v2

Git reference docs:
https://git-scm.com/docs

HSF Git guide:
https://hsf-training.github.io/analysis-
essentials/git

Git cheat-sheet
https://ndpsoftware.com/git-cheatsheet.html

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 81

https://git-scm.com/book/en/v2
https://git-scm.com/docs
https://hsf-training.github.io/analysis-essentials/git
https://hsf-training.github.io/analysis-essentials/git
https://ndpsoftware.com/git-cheatsheet.html

Exercise session

Tomorrow the 18th , from 15:15 to 16:15

You will need:
• Your own laptop, with git and an internet connection
• You will download (if you don’t have it yet) git-filter-repo
• Optionally c++ compiler, cmake

(if you want to compile and execute the sample code in the repository)

https://github.com/rsreds/git-good

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 82

https://github.com/rsreds/git-good

Thank
you!

More on restore

git restore --worktree
• Default behaviour. Changes go into your working copy

git restore --staged
• Changes go into your index

• you can pass both to combine the behaviour
git restore --source <tree>

If not specified, the contents are restored from the staging area
otherwise, they’re restored from the specific tree.

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 84

https://github.blog/2019-08-16-highlights-from-git-2-23/

https://github.blog/2019-08-16-highlights-from-git-2-23/

More on reset: reset filename

Passing a path to reset will not move the HEAD but replace content.

git reset --mixed filename
replace the index copy of filename with the copy from the HEAD
Effectively unstaging the file: the inverse of git add filename

As for add, it accepts the –-patch option

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 85

More on reset: ORIG_HEAD
Git keep the previous value of HEAD in
variable called ORIG_HEAD.
To go back to the way things were:
 git reset ORIG_HEAD

Allows you to avoid using the reflog
to undo a rebase or a merge
git reset --hard ORIG_HEAD

Reset history to status before merge

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 86

$ git reflog

5d18706 (HEAD -> feature) HEAD@{0}:
rebase (finish): returning to
refs/heads/feature

5d18706 (HEAD -> feature) HEAD@{1}:
rebase (start): checkout HEAD~3

9c0984f HEAD@{2}: checkout: moving from
main to feature

…

$ git show ORIG_HEAD

commit 9c0984f…

file:
v3

file:
v1

file:
v2

Repository

More on reset: squashing
• Squashing commits

Combine multiple commits in history into one

git reset --soft HEAD~2
Move HEAD back to an older commit but keeps the working
directory to the most recent update.
Commit will update the repository to the status of the previous
HEAD, with no trace of the commit HEAD~2

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 87

Working area Staging area

file:
v3

file:
v3

HEAD

m
ai

n

Dangling commit and GC

Git automatically runs a command called auto gc
• Packs loose objects
• Removes object not reachable from any commit
• Removes dangling commit: not referenced by anything

It does this when you have more than 6700 loose object!
It prunes dangling commit older than 90 days!

The garbage collector most often does nothing!

17/04/2024 Simone Rossi Tisbeni - Advanced git Course - iCSC 2024 88

	Advanced git Course
	Who am I
	Table of Content
	Diapositiva numero 4
	Recap: the three areas
	Recap: working area
	Recap: staging area
	Recap: repository
	Recap: what is a commit?
	Recap: you can’t “change” commits
	Recap: branches
	Recap: references
	Recap: heads
	Recap: tags
	Recap: remotes
	Typical workflow: init
	Typical workflow: add
	Typical workflow: commit
	Typical workflow: editing tracked files
	Typical workflow: skip the staging
	Typical workflow: remote repository
	Typical workflow: all the pieces
	Why advanced git?
	stash
	stash list
	stash options
	patch(-p)
	Diapositiva numero 28
	Saying goodbye to checkout
	restore and switch
	restore and switch: Reference sheet
	Fixing mistakes
	Fixing mistakes: restore
	Fixing mistakes: reset
	Fixing mistakes: reset --soft
	Fixing mistakes: reset --mixed
	Fixing mistakes: reset --hard
	Moving HEAD
	Fixing mistakes: revert
	Diapositiva numero 40
	Merge
	Merge (contd.)
	Rebase
	Rebase
	Rebase
	Rebase
	Fast-forward
	Merge vs Rebase
	cherry-pick
	reflog
	reflog: missing references
	@{…} reference
	Rewriting history: amend
	Rewriting history: rebase
	Rewriting history: rebase todo list
	Rewriting history: rebase options
	Rewriting history: rebase interrupted
	Diapositiva numero 58
	Diapositiva numero 59
	Force push with lease
	Rewriting history: the hard way
	Rewriting history: git filter-repo
	Rewriting history: filter-repo warnings
	Rewriting history: removing sensitive data
	Rewriting history: removing sensitive data
	Rewriting history: removing sensitive data
	Rewriting history: changing author
	Rewriting history: changing author
	Rewriting history: removing large binaries
	Rewriting history: removing large binaries
	Git Hooks
	Git Hooks: committing hooks
	Git Hooks: client-side hooks
	Git Hooks: server-side hooks
	Sample Hook: disallow unsafe rebase
	log
	log: partial display
	log: searching
	blame
	bisect
	Useful link
	Exercise session
	Diapositiva numero 83
	More on restore
	More on reset: reset filename
	More on reset: ORIG_HEAD
	More on reset: squashing
	Dangling commit and GC

