
The perfectly parallel exercise
Zenny VVetterstena,b

aCERN
bTUWien

Inverted Cern School of Computing 2024

Abstract—Welcome to the Totally Accurate DnD Simulator exercise
for the iCSC2024! In this exercise, your task is to try to use hardware acceleration
to speed up the program "testSuite", which is a C++ program that simulates
Dungeons and Dragons 5e combat to test the general balancing of the system.
In this document you’ll find the guidelines, prerequisites, and some general tips
and hints as to how to go about the exercise.

Contents

1 Introduction I

2 Background I

2.1 Barbarian . I

2.2 Cleric . I

2.3 Rogue . II

2.4 Wizard . II

3 Prerequisites II

4 Getting the testSuite up and running II

4.1 Compilation . II

4.2 Running . II

5 Exercise III

5.1 Profiling . III

5.2 Multithreading . III

5.3 Task . III

6 Bonus exercises III

6.1 Compiler optimisation . III

6.2 Pre-processing . IV

6.3 Vector instructions . V

7 Closing thoughs V

1. Introduction

F ew things are as annoying as waiting, but when running large
code bases that is really the only thing we can do. Whether we

have a fixed problem size, or a fixed clock time, while the program
itself is running we just have to wait for it to finish. However, in order
to get rid of this waiting, or to make this waiting more fruitful, we can
accelerate our code — that is, we can parallelise it. That is exactly
what we will be doing today. In this exercise, your goal is to speed
up the program testSuite as much as possible (preferably using some
parallelism scheme).

2. Background

The tabletop role playing game system Dungeons & Dragons Fifth
Edition (5e) has player characters (PCs) controlled by players, as
well as non-player characters (NPCs) controlled by the game master.
Although there are a bunch of ways for PCs to interact with the game
world, our game Totally Accurate DnD Simulator is primarily focused
around combat. Consequently, we’ve made a small test suite very
originally called testSuite which, simply put, checks how likely it is
that a PC will hit an NPC, and vice versa.
Although 5e has many different PC classes to choose from, for our

test suite we’ve made four different pre-built PCs that reflect roughly
how we expect players to progress throughout the game. These four
are stand-ins for the four typical styles of play we expect to to see,

and we expect to see that reflected in the balance tests testSuite runs.
Generally, 5e is balanced around two assumptions:

• PCs hit an an NPC of the same level 65% of the time
• NPCs hit a PC of the same level 45% of the time

Note

While PCs have progression defined by their level, NPCs have a
challenge rating (CR), which is roughly equivalent. An NPC of
a given CR is intended to be an appropriate threat for a group of
four PCs of the same level as the NPC CR. This is what we mean
by “the same level”, and we will not differntiate between level
and CR henceforth.

Although this might seem pretty simple, different character
archetypes won’t fit this pattern to a tee — in fact, it is pretty un-
likely that any given PC will fit this pattern perfectly. Additionally,
while we know hew often attacks should hit, we haven’t actually de-
scribed how attacks are performed. In fact, the exact method will vary
from PC to PC and NPC to NPC. However, they all build on the same
foundation: Rolling a 20-sided die (1d20). The four classes used for
the pre-built PCs in testSuite are described below. In general, whether
an attack hits or not is given by whether

1d20 + mod + prof > AC,

where mod is the relevant character statistic, prof is a number repre-
senting whether the character has proficiency with the given type of
attack, and AC is the armor class of the target character (a measure-
ment of how hard they are to hit). The relevant character statistics
are strength, dexterity, constitution, intelligence, wisdom, charisma.

2.1. Barbarian
The barbarian class is your standard frontline warrior, who both hits
and gets hit a lot. They have a lot of health points, and can reduce the
amount of damage they take from attacks. Additionally, starting at
level 2, they can increase the chance hitting enemies at the expense
of increasing the risk of enemies hitting them:

• Reckless Attack
Starting at level 2, when you make an attack using your strength,
you can choose to roll 2d20 and take the higher result. When
you do, any enemy that attacks you also rolls 2d20 and takes the
higher result.

Thus, we expect barbarians to hit a lot more often than other PCs,
but also to get hit a lot more often.

2.2. Cleric
Clerics can play a lot of different roles, but our pre-built cleric is
expected to be a healer, meaning they can help their teammates rather
than focusing on hitting enemies with attacks. Clerics usually use
better armor than most other characters, so we expect them to be a
bit harder to hit. On top of that, though, our pre-built cleric doesn’t
make attacks — instead, they use spells which force the target to
make a saving throw. The enemy rolls this saving throw as stated
below, and checks whether the result is lower than the cleric’s spell
save difficulty, which is calculated from the cleric’s wisdom.

• Saving throw
When a cleric attacks an NPC, the NPC has to roll 1d20 + mod

iCSC2024 CERN April 14, 2024 The perfectly parallel exercise I–V

mailto:zenny.wettersten@cern.ch

The perfectly parallel exercise

+ prof and check whether the result is equal to or higher than
the cleric save difficulty of 8 + wisdom + prof. If it is not, the
attack hits.

2.3. Rogue
For the purposes of testSuite, the rogue is the simplest class: They
just roll a standard attack roll and add their dexterity and their profi-
ciency, without any additional algorithmic complications. This does
not exactly reflect their full functionality in 5e, but it is a sufficient
simplification.

2.4. Wizard
Like the rogue, the wizard is very simple — although instead of
attacking with weapons, they use their magical spells, but unlike
clerics these spells actually make attack rolls. To determine whether
an attack hits, the wizard rolls 1d20 and adds their intelligence and
their proficiency.

3. Prerequisites

The first thing you need in order to do this exercise is the git repo (url
https://github.com/zeniheisser/parallelism_exercise). If you’re using
the terminal to clone the repo, you can pull the code base with the

git clone
https://github.com/zeniheisser/parallelism_exercise.git

or

git clone
git@github.com:zeniheisser/parallelism_exercise.git

command, and if you additionally want to try making your own
FlameGraphs you can also download Brendan Gregg’s FlameGraph
repo alongside the exercise by using the command git clone
–recurse-submodules URL.
To actually compile testSuite, you need:

• g++, version 9 or later
• OpenMP library, libomp-dev

where g++ is necessary to compile at all*, and libomp-dev is nec-
essary to compile with multithreading. If you want to generate the
heatmaps, you also need:

• Python 3
• (matplotlib)
• Pandas
• Seaborn

which are not needed for parallelisation, but are useful to check
testSuite statistics, and make some very pretty pictures.

Installing Python packages

If you do not have Pandas or Seaborn on your machine, they are
easily installed usingpip. Simply run the command pip install
pandas seaborn in your Python environment. If you do not have
pip available either, the documentation is very accessible.

If you also want to try out making FlameGraphs, you need to make
sure you have a FlameGraph visualiser on your machine. Addition-
ally, you will need:

• perf

which is (most often) what you would use to get the stack traces used
for FlameGraphs.

*If you want to use another C++ compiler, you’re free to modify the makefile!

4. Getting the testSuite up and running

4.1. Compilation
Once you have the necessary tools installed and the code base cloned,
compiling testSuite is as simple as writing make in your command
line interface. This will compile the three files rng.cpp, dndSim.cpp,
and testSuite.cpp into the executable file testSuite.

Note

If you aren’t going for the bonus exercises, the only file you will
need to look at is testSuite.cpp. For the bonus exercises, which
files are relevant will bementioned alongside the problem descrip-
tion.

The makefile allows for four different “make commands”:

• make
Compiles the three files with the flags -std=c++17 -g -O0.

• make parallel
Identical to make, but adds the flag -fopenmp.

• make clean
Removes the files rng.o, testSuite.o, and testSuite.

• make cleanall
Removes rng.o, dndSim.o, testSuite.o, testSuite, and all
.csv and .png files in the directory.

Note

We compile without any compiler optimisation (-O0). This means
any speedup you see when running make parallel is exclusively
from multithreading. In one of the bonus exercises, you can
check whether compiler optimisation would be better than just
multithreading.

4.2. Running
To run testSuite, in your command line interface you just need to type

./testSuite n

where n is an integer. testSuite will then run n attack simulations
for each pre-built PC for each character level for each enemy level,
both attacking and defending. More simply put: For each of the four
classes, for each player level between 1 and 20, for each enemy level
between 1 and 20, we test whether the player hits the enemy and if
the enemy hits the player n times.
After a successful run, you should see some text in your command

line interface. The final line should say “Time taken: x ms”, where x
is the total runtime of the measured section of the code. Additionally,
you should now have eight different .csv files in the run directory,
representing the probability distributions of player characters hitting
enemies and enemies hitting player characters. Then, to generate the
heatmaps, you run the command

python plotHitRate.py

after which the beautiful .png files should also be available in that
same directory.
If you also want to try making your own FlameGraph, you just

need to run the command

./flamegraph.sh

where you will likely discover that you do not have access to frame
pointers or something similar. Googling the warning message should
easily give you a solution for this.
By the way, the exported .svg FlameGraph file is intractable — try

opening it in your browser!

II iCSC2024 Zenny Wettersten

https://github.com/zeniheisser/parallelism_exercise
https://github.com/zeniheisser/parallelism_exercise
https://pypi.org/project/pip/
https://github.com/brendangregg/FlameGraph

The perfectly parallel exercise

Note

The runtime written by testSuite isn’t the full program runtime,
but the time it takes to initialise all the necessary vectors/arrays
and to then evaluate the hitrates. We ignore the time taken by any
text written to the command line interface, as well as the time
taken to export the .csv files. If you calculate speedup using this
output, you will get the Gustafssonian acceleration— if you want
to get Amdahlian acceleration, you may want to move the time
measurement variables t1 and t2 to the top and bottom of the
main function, respectively.

5. Exercise

5.1. Profiling
In the git repo, we’ve included a FlameGraph (flamegraph.svg) for
testSuite showcasing where the runtime is spent†. A screenshot of
this FlameGraph is given in Fig. 1. As we can see in the FlameGraph,
more than half of the runtime is spent in the different types of attack
functions, suggesting that this is indeed the part we should prioritise
parallelising.

Figure 1. FlameGraph to profile testSuite, where the attack functions
(making up ∼62% of runtime) have been highlighted.

5.2. Multithreading
For this exercise, you need to write exactly one(!) line of code. The
line in question is

#pragma omp parallel for

which tells the compiler that the next for-loop should be split across
all available threads on your machine using the OpenMP library.
As noted, this is not SIMD parallelism — technically, it is MIMD
multiprocessing — but it can speed up the code by quite a lot‡, and it
showcases the “loop unfolding” method of thinking you should use
for “truly” data parallel implementations.

5.3. Task
First and foremost, you need to determine where to put the pragma
mentioned in the previous subsection. As mentioned, the pragma
tells the compiler that the next for-loop should be multithreaded —
play around and see what happens when multithread different loops!
How much can you speed up the program just with multithreading?
Although we said you’d only need to write one line of code, you can
of course add the pragma to each of the loops separately. What’s the
effect when multithreading different loops?
Once you have testSuite running multithreaded, you can start look-

ing at the actual loops themselves. Are all these different loops actu-
ally necessary? Could the loop order be optimised? Could some loops

†Note that the horizontal axis in the FlameGraph represents runtime, but is sorted
alphabetically rather than chronologically.

‡On my local machine, just moving some loops and compiling with OpenMP I could
reduce the runtime for fixed n by ∼55% without writing any new code or any compiler
optimisation.

Level Total Normal Spell.
1 199 160 39
2 298 200 98
3 260 192 68
4 192 130 62
5 261 191 70
6 144 90 54
7 131 78 53
8 128 83 45
9 121 71 50
10 90 56 34
11 82 46 36
12 74 39 35
13 59 34 25
14 49 28 21
15 52 23 29
16 40 24 16
17 35 15 20
18 33 20 13
19 16 10 6
20 21 14 7

Table 1. The number of NPCs at each level between 1 and 20, ordered by
level. The second column tells the total number of NPCs at the given level,
while the third and fourth columns detail the number of “normal” NPCs and
“spellcaster” NPCs, respectively. Spellcasters are defined as NPCs that cause
the PC to make a saving throw, rather than making its own attack roll.

be combined? Could some parts be reused between loops without
worsening statistics in any notable fashion?

Note

Remember that you need to compile using the make parallel
command to use OpenMP multithreading — if you just run make,
the compiler will ignore the pragmas. To recompile with OpenMP,
you might need to run make clean first.

As a sidenote, random_encounter(int lvlNPC) generates a ran-
dom NPC from the list of NPCs in all_monsters.txt at the given
level. As reference, the number of distinct monsters at each level is
given in Table 1, where we also note that random_encounter addi-
tionally takes a string as argument, which allows the user to choose
between spellcasting NPCs (defined as NPCs whose attacks cause sav-
ing throws, rather than making their own attack rolls), regular NPCs
(NPCs who make standard attack rolls), or any type of NPC using the
arguments “spellcaster”, “regular”, or “any”, respectively§.
The single goal of this exercise is to refactor and multithread test-

Suite in order to speed it up as much as possible. Once you feel
like you’ve gotten a feel for how to structure your code to maximise
concurrency, minimise inter-thread communication, and get rid of
superfluous function calls, you can consider yourself done! Good job!

6. Bonus exercises

Following you will get some additional possible continuations to the
main exercise, which you can try out if you’d like to work further
on understanding optimisation and parallel programming. If you
aren’t familiar with C++, compilation flags, or data management,
they might prove to be a welcome introduction to the subject(s).

6.1. Compiler optimisation
As you might have noticed, the makefile uses the flag -O0, meaning
we explicitly tell the compiler to do no optimisationwhatsoever— the
§Using any argument other than type = “any” is irrelevant for multithreading, but you
can try to set up the structure necessary for a proper SIMD implementation if you’d like.

Zenny Wettersten CERN April 14, 2024 The perfectly parallel exercise III

The perfectly parallel exercise

final executable will function exactly in the manner defined by the
original C++ code. Since the average compiler is quite a bit smarter
than the average programmer, wemight expect compiler optimisation
to be better than our direct OpenMP implementation. So let’s try it!
To change the compiler optimisation level, you just need to change

a single character in the second line of the makefile,

CXXFLAGS = -std=c++17 -g -O0

where the flag you may want to change is -O0, which you can change
to -O2 or even -O3.
Having done this you might notice that when you enable compiler

optimization, you might notice that the compilation suddenly takes
an awful long time. In fact, the code might not even compile at
all. Specifically, it seems to get stuck when compiling dndSim.cpp
into dndSim.o. This is pretty weird, considering dndSim.cpp is only
slightly larger than testSuite.cpp, no?
If you take a look into dndSim.cpp, you might find the offending

part — but if you don’t, let us reveal it: Line 403 of dndSim.cpp reads

#include "all_monsters.txt"

meaning that at compile time, the entirety of all_monsters.txt is
loaded into dndSim.cpp. Considering the former is roughly 20 times
larger than the latter and exclusively initialises all the NPC objects,
meaning there is very little optimisation to be made¶. So, if we want
to get some compiler optimisation, we will probably need to stop
compiling all_monsters.txt with the same flags as the rest of the
code.
To separate the compilation between dndSim.cpp and

all_monsters.txt, you will need to make all_monsters.txt
into a separate compilable object which you can then link testSuite
against, while ensuring that all the any objects accessed outside
of all_monsters.txt are declared within any scope that accesses
those objects. That is to say, you need to make all_monsters.txt
into a separate .cpp file, and then ensure that dndSim.cpp is aware
of the existence of the three vectors monsters, spell_monsters,
and non_spell_monsters, since these vectors are what are actually
called in the random_encounter functions.
Tomake sure that your all_monstersC++ implementation recog-

nises all the functions used to initialise the NPCs, you will need to
include the dndSim.h header file within the implementation, since
that is where everything used for the actual NPC declarations are
pre-declared. Additionally, you will need to tell dndSim.cpp that the
relevant vectors exist and will be available at runtime — this is done
by pre-declaring them (while making sure you have your namespace
scopes set correctly), e.g. by including something like

extern
std::vector<std::vector<std::shared_ptr<dndSim::npc> >

> monsters;

or similar, etc. You then also need to ensure that you have compi-
lation rules for all_monsters inside your makefile, and in order to
compile the different .o files with different compiler flags you’ll also
need to set the compilation flags for all_monsters and the rest of
the code separately. Don’t forget to add all_monsters to the make
clean(all) commands!
If you get this compilation chain to work, you should be able to

compile the actual executable testSuite with stronger compiler opti-
misation, without having to wait an eternity for g++ to realise that
it can’t actually optimise the monster instantiations all that much.
Voila! Maybe the compiler can outperform a direct OpenMP imple-
mentation? Maybe you can use both for an even better speedup? The
world is your oyster.

¶We as programmers recognise that all_monsters.txt probably can’t be very optimised,
but the compiler doesn’t know that. The compiler will try to optimise all the code.

6.2. Pre-processing

The reason we didn’t use SIMD vectorisation in the main exercise
(aside from the fact that not allmodern consumer-gradeCPUs support
vector instructions) is that vectorised random number generation is
has far less support than other vector instructions — and since the
central function call of testSuite is simply a random number generator
alongside an integer comparison, vectorised implementations of the
attack functions would be a lot more convoluted than compiler
automatic vectorisation. That integer comparison, though — there,
we just check which of two integers is greater. That should be easily
vectorised, right?
The idea of this bonus exercise is to restructure the rng.cpp imple-

mentation generate all the random numbers prior to any of the actual
numerical evaluations, which should make it possible to to vectorise
the attack functions themselves. Although this pre-processing itself
will probably cause a slight slowdown due to the additional memory
management, we can hope that the vectorised speedup in the attack
functions themselves will outweigh this overhead.
If you take a look into dndSim.cpp and rng.cpp, you might no-

tice that there are several different versions of the roll1d20() (and
roll2d20dl()) routines — one generic one and one for each of the
classes (as well as a generic roll2d20dl() routine alongside one
for the barbarian class). This means that we could replace the dice
functions while keeping track of how they will be used at runtime,
i.e., we can keep track of how and when each random number is used.
When attacking an NPC, the PC will use their own die function un-
less they cause a saving throw, in which case the generic function
roll1d20() will be used. When an NPC attacks a PC, the PC die
function is always used.
To implement a pre-processing procedure for testSuite, you’re going

to need to override the dice functions so that instead of generating a
random number at call time the random numbers have already been
generated and are then returned by the dice functions themselves.
You can do this either by function overloading or compiler time if-
statements.

Function overloading and ifdefs

C++ supports so-called function overloading, where different
functions can use the same name and instead be distinguished
by argument type. Thus, you could e.g. override roll1d20()
by defining a function roll1d20(int index), which instead of
generating a random die roll instead accesses a pre-defined vector
pre_rolled and returns the value pre_rolled[index].
Alternatively, you could use #ifdef to set which part of the code-
base to actually compile. For example, if you write a new ver-
sion of roll1d20(), which is wrapped by something like #ifdef
PREPROC (where the original version of the function should of
course be included in the #else branch), you can then call the
make commands with the additional flag -DPREPROC to tell the
pre-processor that PREPROC is defined for this particular compila-
tion.

Once you have altered versions of the dice functions, you need
to make sure you actually load up the data in advance of any call
to the dice functions, while making sure the the relevant vectors
are accessible to the relevant dice functions. You can most simply
do this by adding a function to rng.cpp which initialises these pre-
processed vectors and randomly generates the relevant numbers (in-
tegers between 1 and 20) with the correct distribution (uniform, or
roll2d20dl() for some (but not all!) calls to the barbarian). Note
here that in the default version of testSuite we do not know a priori
howmany times barb_roll1d20() and barb_roll2d20dl() are
called, since whether an enemy makes an attack or causes a saving
throw is random.

IV iCSC2024 Zenny Wettersten

The perfectly parallel exercise

Note

Although the barbarian class in 5e can roll 2d20dl for strength
saving throws, none of the implemented NPCs in our game tar-
get the strength statistic. Thus, any type=“spellcaster” type
enemy will use barb_roll1d20(), while any type=“regular”
enemy attacking a barbarian of at least level 2 will use
barb_roll2d20dl(). If you want to make sure you don’t gen-
erate too many random numbers, you can explicitly separate
“regular” and “spellcaster” enemies into two different loops
— otherwise, you can of course just generate the maximum possi-
ble amount of random numbers for each of the functions.

With the actual pre-processing functions written, you just need
to make sure that the random number generation itself is called at
the top of your main function, and now you have a program where
all the random number generation is separated into a pre-processing
routine. Great job!

6.3. Vector instructions
For the final bonus exercise, let’s try to get some vectorised instruc-
tions running in our program. If you haven’t done bonus exercise 2,
you will probably not be able to get SIMD instructions running in the
simulation loop — but there are some good news: There’s a different
part of the code that does simple integer addition and floating point
division!
If you haven’t touched the accumulation loops on lines 201 through

218 of testSuite (in the current version of the git repo), you can take a
look there and see that the only things done are tallying up the total
amount of successful attacks, before normalising it to a probability.
These for-loops are of course embarrassingly parallel across all 2 ×
4 × 202 iterations, so vector instructions might be applicable here.
Although we might simply try to vectorise these loops with com-

piler flags (which you can add in the makefile by simply appending
or modifying the value of CXXFLAGS), in order to get a proper under-
standing of howand if SIMDvectorisationworks, Iwould recommend
that you use some explicit directive. Since we’re using OpenMP for
the main exercise, we’ll remind you that OpenMP has a directive for
explicit SIMD vectorisation,

#pragma omp simd

which will apply SIMD instructions to the next for-loop in the pro-
gram. If you’ve already done bonus exercise 2, you should be able to
add this to the simulation loop(s), but if you jumped straight here you
should nevertheless be able to add this to the accumulation loop(s),
although you are unlikely to see much measurable acceleration in
that case.
Best of luck!

7. Closing thoughs

If you’ve gotten this fair, that means you’ve either finished the main
exercise or maybe even the bonus exercises (or you’re reading ahead,
in which case, very studious of you! Sadly, there’s no secret cheat code
down here to get everything working on your first try.). In the former
case, great job! If you want to learn more about the practical details
of writing optimised, heterogeneous, and parallel code I advise you
to take a look at the bonus exercises, which go a lot deeper into the
details of writing a vectorised program. In the latter case — amazing!
You’re (one of) my favourite student(s), and may proudly present that
on your CV.
Although this exercise has mostly been about getting any level of

parallelism working on completely sequential code, it should have
given you an understanding for task- and data-parallelism, and how
you might go about applying it to your own problems. Feel free to
contact me if you have any thought or questions, if you have ideas for
porting your own code to heterogeneous or parallel architectures, or
if you happen to need a bass-baritone singer for your choir or musical
theatre troupe. And if not, I’m happy you joined this exercise ses-
sion and did this exercise, and I hope that you’ve learned something
you might actually use in your own work or for any personal hobby
projects you have on the side. Than you so much for attending, and
happy coding! :-)

Contact:
Ñ513/1-014, CERN, Meyrin Site
zenny.wettersten@gmail.com

§zeniheisser

Zenny Wettersten CERN April 14, 2024 The perfectly parallel exercise V

mailto:zenny.wettersten@cern.ch
https://github.com/zeniheisser/

	Introduction
	Background
	Barbarian
	Cleric
	Rogue
	Wizard

	Prerequisites
	Getting the testSuite up and running
	Compilation
	Running

	Exercise
	Profiling
	Multithreading
	Task

	Bonus exercises
	Compiler optimisation
	Pre-processing
	Vector instructions

	Closing thoughs

