MD10724: BFPP Quench Test 2023

J.M. Jowett, R. Bruce, P. Hermes

Based on slides shown by <u>C. Bahamonde Castro</u>, R. Bruce, M. Jebramcik, J. Jowett, A. Lechner, M. Schaumann at rMPP 20/11/2018 for MD4746 (which did not happen ...)

11/10/2023

Use BFPP beams to induce a quench in a main dipole magnet

Information on steady state quench limit in a clean loss scenario:

- Impact point in magnet can be controlled by orbit bumps avoiding magnet ends, which would return less accurate quench level estimates
- Quench limit can be approached gradually by anti-levelling the luminosity of the IP, since the power of BFPP beams is directly proportional to luminosity and can therefore be controlled by changing the beam separation

Proposed magnet for MD: MB.B11R1.B1

Motivation

First test performed on 8 Dec 2015 (Fill 4707) on MB.B11L5.B2

Location chosen due to observed loss situation

- Losses still in the MB during regular operation with -3mm bump
- Could easily move losses deep into the MB by inverting the bump for QT
- Somewhat inconclusive results *Phys. Rev. Accel. Beams* 23 (2020) 121003 require second test at different location
 - <u>Discrepancy</u> between the expected & the actual <u>loss location</u>→ analysis revealed aperture misalignment in this zone
 - Quench limit lower than expected
 - Power density reconstructed with FLUKA was factor ~ 2 lower than the quench level predicted by electro-thermal models.
 - Quench happened at 2.3×10²⁷cm⁻²s⁻¹ but max. luminosity reached during 2015 run 3.6e27 cm⁻²s⁻¹ and no other BFPP induced quenches occurred (bump in L5 still left some losses inside MB)

Quench Risk Mitigation with Orbit Bumps

Orbit bumps are used to move the secondary beam losses to a less vulnerable location in order to reduce risk of quench.

Operational bump in 2023

- BFPP bump Setup evening of 21/9/2023
- Initial amplitude in R1 (-2.5 mm) did not require much further adjustment
- Works well in physics with luminosity up to 6x 10²⁷cm⁻²s⁻¹

with thresholds increased to allow 6×10^{27} cm⁻²s⁻¹ (to check with BLM team, similar to 2018 plan)

Procedure

2 Prepare beam as for **standard physics fill** until collisions.

BLM MFs =1 at MB.B11R1 (and L1/R5)

- ③ Re-separation of the beams to reduce burn-off, and to about 2σ in IP1
- ④ Reduce beam separation in steps at IP1 to have enough luminosity to determine the impact point of the BFPP beam in the MB based on the BLM signals.
- (5) Invert BFPP orbit bump R1 from operational setting (-2.5 mm) until losses are fully in the MB (expect slightly positive bump around +1 mm).
- 6 Reducing the separation in IP1 in 5 or 10 μm steps until quench occurs (wait 0.5-1min/step) ~30 min total to quench

11/10/2023

(1)

Time evolution of the 2015 test

Other considerations in 2018

QPS crates

New patched nQPS boards installed during TS3 in cell 11 L/R of IR1 & IR5 in anticipation of the ion run.

Losses during intensity ramp up and high intensity EOF tests will be closely monitored to spot potential issues triggered by R2E.

MP3

No special constraints for quenching MB.B11 in L1/R1 according to magnet experts

In 2023, verify with cryo ...

Secondary Beams created in the Collision

11/10/2023

FMD1

500

400

FLUKA Results of 2015 test

BLM signals can be accurately reproduced with FLUKA, but strongly depend on the longitudinal loss location.

Inconsistencies found. A second test in a different location is required to understand and confirm the results.

Power deposition in the MB coils is **lower** than expected*,

- strongly depends on shape of loss distribution
- shape effect is washed out in the BLM signals.
 35 Effect is under edge cable = 1

*power density reconstructed with FLUKA is about a factor of two lower than the quench level predicted by electro-thermal models

