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FUNDAMENTAL SCALE INVARIANCE
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SCALE TRANSFORMATION IN 2 DIMENSIONS



WHY SCALE INVARIANCE?

Naturally renormalizable, but also avoids fixing the relevant parameters of the theory

• Fixed points are exact scaling solutions 

• Higher predictive power
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RENORMALIZABILITY



WHY SCALE INVARIANCE?
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• Fixed points are exact scaling solutions 

• Higher predictive power
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V

ϕ/Mpl

INFLATION

Flat inflationary potentials without fine-tuning 

RENORMALIZABILITY



SCALE-INVARIANT QUADRATIC GRAVITY
THE MODEL M. Rinaldi and L. Vanzo PR D 94 (2016)

➤ : scalar-tensor theory of modified gravityℒEH ⟶ f(R, ϕ)

ℒJ = −g [ α
36

R2 +
ξ
6

ϕ2R −
1
2

(∂ϕ)2 −
λ
4

ϕ4], α, λ, ξ > 0

Higher order term 
in R

Scalar field

➤ Two additional scalar degrees of freedom
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∙ ḡμν(x) = gμν(ℓx)

∙ ϕ̄(x) = ℓϕ(ℓx)
ℒ̄ = ℒ

SCALE TRANSFORMATION



SCALE-INVARIANT QUADRATIC GRAVITY

ρ

GOLDSTONE 
BOSON

χ

INFLATON

V

ρ/M

Unstable point

Stable fixed point

➤ Noether’s current conservation  

➤ Naturally flat plateau: no fine-tuning

EINSTEIN FRAME: SINGLE-FIELD POTENTIAL

4



SOME RESULTS

➤ Lower bound on the tensor-to-scalar ratio: ;  r > 0.003

ANALYTICAL AND NUMERICAL ANALYSIS
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SOME RESULTS

➤ Lower bound on the tensor-to-scalar ratio: ;  

➤ Insensitivity to initial conditions;  

➤ Vanishing entropy perturbations;  

➤ Possibility to distinguish scale invariance from 

Starobinsky’s inflation. 

r > 0.003

ANALYTICAL AND NUMERICAL ANALYSIS
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BACKUP SLIDES



FUNDAMENTAL SCALE INVARIANCE

Basic idea: a fundamental QFT does not involve any intrinsic parameter with 
dimension of mass or length

ϕ = k ϕ̃Canonical field 
Dimension of a mass

Scale-invariant field 
Dimensionless

Following Wetterich, we can introduce an explicit mass scale k

The corresponding effective actions obey

k∂kΓk[ϕ] = ζk[ϕ] k∂kΓk[ϕ̃] = 0

General solution Particular, scaling solution holding 
when the canonical fields are expressed 
in terms of the scale-invariant ones

C. Wetterich , Nuclear Physics B, 115326 (2021) 
A. Strumia & A. Salvio, J High Energ Phys, 6 (2017)



FUNDAMENTAL SCALE INVARIANCE
NATURALLY FLAT POTENTIALS FOR INFLATION

Scale-invariant theory non-minimally coupled to gravity 

ℒJ = −g [ξ ϕ2R − λϕ4 −
1
2

(∂ϕ)2]
Weyl rescaling from the Jordan to the Einstein frame

ℒE = −g̃ [
M2

pl

2
R̃ − M4

l
λ
ξ2

−
1
2

(∂ϕ̃)2]
The potential is flat at tree-level: no fine-tuning. Scale 
symmetry breaking can occur from quantum corrections.



FUNDAMENTAL SCALE INVARIANCE
A CRITERION BEYOND RENORMALIZABILITY

For general renormalizable theories the effective action remains well defined in the 
continuum limit if one employs renormalized fields 

ϕR,i(x) = kdi fi(k) ϕ̃i(x)Renormalized fields Scale-invariant field

Theories with fundamental scale invariance: 

➤ Renormalizable 

➤ For some choice of the fields  the effective 
action becomes k-independent 

➤ Exact scaling solutions: no free parameters. 
High predictive power

ϕ̃



SCALE-INVARIANT QUADRATIC GRAVITY
WEYL CORRECTION
Squared Weyl curvature term: conformally-invariant, second order term. Why don’t 
we add it to the action?

C2 = 2RμνRμν −
2
3

R2 + 𝒢

𝒢 = R2 − 4RμνRμν + RμνρσRμνρσ

Background: The Weyl curvature term vanishes in a conformally flat spacetime  
 no contribution to the equations of motion→

Perturbations: Weyl-Starobinsky inflation is plagued by ghosts and classical instabilities
 possible drawback also here (ongoing project)→

A. De Felice et al. Phys. Rev. D 108, 123524 (2023)



SCALE-INVARIANT QUADRATIC GRAVITY
JORDAN FRAME

The field  is subjected to an effective potentialϕ Veff(ϕ) = −
ξ
6

ϕ2R +
λ
4

ϕ4

ϕSaddle point

Stable fixed point

V

Classical scale-symmetry breaking Dynamical generation of a mass scale

The scalar field takes a non-zero VEV at 
the minimum

Natural identification with the Planck 
mass

⟨ϕ2
0⟩ =

ξR
3λ

ξ
6

ϕ2
0 R ≡

1
2

M2
plR



SCALE-INVARIANT QUADRATIC GRAVITY
EINSTEIN FRAME g*μν = Ω2gμν

Two dynamical degrees of freedom: are we in multi-field inflation?

𝔣 ϕ

ℒE = −g [ M2

2
R −

3M2

f 2
(∂f )2 −

f2

2M2
(∂ϕ)2 − V( f, ϕ)]



SCALE-INVARIANT QUADRATIC GRAVITY
EINSTEIN FRAME g*μν = Ω2gμν

Two dynamical degrees of freedom: are we in multi-field inflation?

Flat direction

Noether’s current conservation: constraint on the dynamics!



SCALE-INVARIANT QUADRATIC GRAVITY
EINSTEIN FRAME: FIELDS’ REDEFINITION

Noether’s current conservation can be employed to shift the dynamics on one field

ℒE = −g
M2

2
R −

1
2

∂μζ ∂μζ − 3Cosh [ ζ

6M ]
2

∂μρ∂μρ − U(ζ)

ζ = g(𝔣, ϕ) ρ = f(𝔣, ϕ)

G. Tambalo & M. Rinaldi Gen Relativ Gravit 49 (2017)



INFLATIONARY PREDICTIONS
PRIMORDIAL SPECTRA

Even with non-zero initial velocity the Goldstone boson does not contribute

ρ′￼(N) ∼ e−3N → 0

Single-field predictions are recovered, both in the Jordan and the Einstein frame

Scalar perturbations Tensor perturbations

Δ2
s(k) =

1
2M2

pl ϵ ( H
2π )

2

k=aH

Δ2
t (k) =

2
π2 ( H

Mpl )
2

k=aH

A. Ghoshal,  D. Mukherjee, & M. Rinaldi JHEP 5 (2023)

ns − 1 ≈ − 6 ϵ(ζ*) + 2η(ζ*) r ≈ − 16 ϵ(ζ*)



INFLATIONARY PREDICTIONS
NUMERICAL ANALYSIS W. Giarè, M. De Angelis,  C. van de Bruck, & E. Di Valentino JCAP 12(2023)014

 Numerical integration up to the end of inflation ( )|ϵ | = 1

Sufficiently long inflation?

Compute As, ns, αs, r

Are they within some reasonably chosen ranges?

Implement CAMB and assign a likelihood based on how 
well the model agrees with CMB data

Discard

Discard



INFLATIONARY PREDICTIONS
LIKELIHOOD W. Giarè, M. De Angelis,  C. van de Bruck, & E. Di Valentino JCAP 12(2023)014

MCMC analysis for 
ΛCDM + αs + r

Covariance matrix  and mean 
value of the parameters 

Σ
μ

Analytical likelihood

➤ Planck 2018 temperature and polarisation (TT TE 
EE) likelihood 

➤ B-modes power spectrum likelihood cleaned for 
foreground contamination (Bicep/Keck Array 
Collaboration)

DATA

ℒ ∝ exp (−
1
2 (x − μ)T Σ−1 (x − μ)), x ≡ (As, ns, αs, r)

ANALYTICAL LIKELIHOOD



INFLATIONARY PREDICTIONS

•  

•  

• 

ξ < 0.00142

α = 1.951+0.076
−0.11 × 1010

Ω = 0.93+0.72
−2.8 × 10−5

PARAMETERS

•  

•  

•

ns = 0.9638+0.0015
−0.0010

r > 0.00332

AS = (2.112 ± 0.033) × 10−9

POWER SPECTRUM

OBSERVATIONAL CONSTRAINTS

Ω ≡ αλ + ξ2



INFLATIONARY PREDICTIONS
SCALE INVARIANCE VS STAROBINSKY

 and r are anti-correlated like in Starobinsky’s 
model only at fixed . Overall, they are correlated: 
it is potentially possible to discriminate between 
the two models! 

ns
ξ



INFLATIONARY PREDICTIONS
MAGNETOGENESIS

Modify the Maxwell’s action and add helicity to generate primordial magnetic fields 
through a sawtooth coupling to the inflaton: EM conformal invariance is broken only 
during inflation  amplification of vector perturbations→

  S = −
1

16π ∫ d4x −g I2[ζ(t)] [FμνFμν − γFμνF̃μν] + ∫ d4x −gℒE

I =

𝒞 ( a
a* )

ν1

ai > a > a*

𝒞 ( a
a* )

−ν2

a* > a > af1

INFLATION REHEATING

N

I

Ni NfN*

{

C. Cecchini & M. Rinaldi Phys Dar Univ 40 (2023)



INFLATIONARY PREDICTIONS
MAGNETOGENESIS

Present-day magnetic field’s amplitude and coherence length compatible with bounds 
on the IGM fields

MHD tu
rbu
len
ce 
dec
ay 

130
3.7

121 CMB 
2204.06302

Blazars 1006.3504

C. Cecchini & M. Rinaldi Phys Dar Univ 40 (2023)


