

SCALE-INVARIANT INFLATION

Based on arXiv:2403.04316, C. Cecchini, M. De Angelis, W. Giarè, M. Rinaldi, & S. Vagnozzi

Chiara Cecchini

Department of Physics, University of Trento, Italy – TIFPA–INFN Department of Theoretical Physics, CERN, Geneva, Switzerland

Trento Institute for Fundamental Physics and Applications

4th EuCAPT Annual Symposium CERN 14–16 May 2024

May, 15th 2024

FUNDAMENTAL SCALE INVARIANCE Scale transformation in 2 dimensions

WHY SCALE INVARIANCE? RENORMALIZABILITY

Naturally renormalizable, but also avoids fixing the relevant parameters of the theory

- Higher predictive power

• Fixed points are exact scaling solutions

WHY SCALE INVARIANCE? RENORMALIZABILITY

- Fixed points are exact scaling solutions
- Higher predictive power

INFLATION

Flat inflationary potentials without fine-tuning

Naturally renormalizable, but also avoids fixing the relevant parameters of the theory

SCALE-INVARIANT QUADRATIC GRAVITY THE MODEL

 $\blacktriangleright \mathscr{L}_{EH} \longrightarrow f(R, \phi)$: scalar-tensor theory of modified gravity

$$\mathscr{L}_{J} = \sqrt{-g} \left[\frac{\alpha}{36} R^{2} + \frac{\xi}{6} \phi^{2} R - \frac{1}{2} (\partial \phi)^{2} - \frac{\lambda}{4} \phi^{4} \right],$$

Higher order term in R Scalar field

Two additional scalar degrees of freedom

M. Rinaldi and L. Vanzo PR D 94 (2016)

 $\alpha, \lambda, \xi > 0$

SCALE-INVARIANT QUADRATIC GRAVITY EINSTEIN FRAME: SINGLE-FIELD POTENTIAL

- ► Noether's current conservation
- ► Naturally flat plateau: no fine-tuning

• Lower bound on the tensor-to-scalar ratio: r > 0.003;

 \blacktriangleright Lower bound on the tensor-to-scalar ratio: r > 0.003;

Insensitivity to initial conditions;

 \blacktriangleright Lower bound on the tensor-to-scalar ratio: r > 0.003;

Insensitivity to initial conditions;

Vanishing entropy perturbations;

 \blacktriangleright Lower bound on the tensor-to-scalar ratio: r > 0.003;

Insensitivity to initial conditions;

Vanishing entropy perturbations;

Possibility to distinguish scale invariance from Starobinsky's inflation.

BACKUP SLIDES

FUNDAMENTAL SCALE INVARIANCE

Basic idea: a fundamental QFT does not involve any intrinsic parameter with dimension of mass or length

Following Wetterich, we can introduce an explicit mass scale k

 $\begin{array}{c} \text{Canonical field} \\ \text{Dimension of a mass} \end{array} \phi = k \tilde{\phi} \longrightarrow \end{array}$

The corresponding effective actions obey

 $k\partial_k \Gamma_k[\phi] = \zeta_k[\phi]$

General solution

C. Wetterich, Nuclear Physics B, 115326 (2021) A. Strumia & A. Salvio, J High Energ Phys, 6 (2017)

Scale-invariant field Dimensionless

 $k\partial_{\nu}\Gamma_{\nu}[\phi] = 0$

Particular, scaling solution holding when the canonical fields are expressed in terms of the scale-invariant ones

FUNDAMENTAL SCALE INVARIANCE NATURALLY FLAT POTENTIALS FOR INFLATION

Scale-invariant theory non-minimally coupled to gravity

$$\mathcal{L}_J = \sqrt{-g} \left[\xi \phi^2 R - \lambda \phi^4 - \frac{1}{2} (\partial \phi)^2 \right]$$

Weyl rescaling from the Jordan to the Einstein frame

$$\mathscr{L}_{E} = \sqrt{-\tilde{g}} \left[\frac{M_{pl}^{2}}{2} \tilde{R} - M_{l}^{4} \frac{\lambda}{\xi^{2}} - \frac{1}{2} (\partial \tilde{\phi})^{2} \right]$$

The potential is flat at tree-level: no fine-tuning. Scale symmetry breaking can occur from quantum corrections.

FUNDAMENTAL SCALE INVARIANCE **A CRITERION BEYOND RENORMALIZABILITY**

continuum limit if one employs renormalized fields

Theories with fundamental scale invariance:

- ► Renormalizable
- For some choice of the fields $\tilde{\phi}$ the effective action becomes k-independent
- Exact scaling solutions: no free parameters. High predictive power

- For general renormalizable theories the effective action remains well defined in the
 - Renormalized fields $\leftarrow \phi_{R,i}(x) = k^{d_i} f_i(k) \, \phi_i(x) \longrightarrow \text{Scale-invariant field}$

SCALE-INVARIANT QUADRATIC GRAVITY Weyl correction

Squared Weyl curvature term: conformally-invariant, second order term. Why don't we add it to the action?

$$C^2 = 2R_{\mu\nu}R^{\mu\nu} - \frac{2}{3}R^2 + \mathcal{G}$$

$$\mathscr{G} = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$$

Background: The Weyl curvature term vanishes in a conformally flat spacetime \rightarrow no contribution to the equations of motion

A. De Felice et al. Phys. Rev. D 108, 123524 (2023) Perturbations: Weyl-Starobinsky inflation is plagued by ghosts and classical instabilities → possible drawback also here (ongoing project)

SCALE-INVARIANT QUADRATIC GRAVITY Jordan Frame

The field ϕ is subjected to an effective potential

Classical scale-symmetry breaking

The scalar field takes a non-zero VEV at the minimum

$$\langle \phi_0^2 \rangle = \frac{\xi R}{3\lambda}$$

Dynamical generation of a mass scale

Natural identification with the Planck mass $\frac{\xi}{6}\phi_0^2 R \equiv \frac{1}{2}M_{pl}^2 R$

SCALE-INVARIANT QUADRATIC GRAVITY EINSTEIN FRAME $g_{\mu\nu}^* = \Omega^2 g_{\mu\nu}$

Two dynamical degrees of freedom: are we in multi-field inflation?

 $\mathscr{L}_{E} = \sqrt{-g} \left[\frac{M^{2}}{2} R - \frac{3M^{2}}{f^{2}} (\partial f)^{2} - \frac{f^{2}}{2M^{2}} (\partial \phi)^{2} - V(f,\phi) \right]$

SCALE-INVARIANT QUADRATIC GRAVITY EINSTEIN FRAME $g^*_{\mu\nu} = \Omega^2 g_{\mu\nu}$

Two dynamical degrees of freedom: are we in multi-field inflation?

Noether's current conservation: constraint on the dynamics!

SCALE-INVARIANT QUADRATIC GRAVITY EINSTEIN FRAME: FIELDS' REDEFINITION

Noether's current conservation can be employed to shift the dynamics on one field

$$\mathscr{L}_{E} = \sqrt{-g} \left(\frac{M^{2}}{2}R - \frac{1}{2}\partial_{\mu}\zeta \partial^{\mu}\zeta - 3\operatorname{Cosh} \left[\frac{\zeta}{\sqrt{6}M} \right]^{2} \partial_{\mu}\rho \partial^{\mu}\rho - U(\zeta) \right)$$

G. Tambalo & M. Rinaldi Gen Relativ Gravit 49 (2017)

INFLATIONARY PREDICTIONS PRIMORDIAL SPECTRA

Even with non-zero initial velocity the Goldstone boson does not contribute

Single-field predictions are recovered, both in the Jordan and the Einstein frame

Scalar perturbations

$$\Delta_s^2(k) = \frac{1}{2M_{pl}^2 \epsilon} \left(\frac{H}{2\pi}\right)^2 \bigg|_{k=aH}$$

 $n_{\rm s} - 1 \approx -6 \epsilon(\zeta_*) + 2\eta(\zeta_*)$

 $\rho'(N) \sim e^{-3N} \to 0$

Tensor perturbations

A. Ghoshal, D. Mukherjee, & M. Rinaldi JHEP 5 (2023)

$$\Delta_t^2(k) = \frac{2}{\pi^2} \left(\frac{H}{M_{pl}} \right)^2 \bigg|_{k=aH}$$

$$r \approx -16 \epsilon(\zeta_*)$$

INFLATIONARY PREDICTIONS NUMERICAL ANALYSIS

well the model agrees with CMB data

W. Giarè, M. De Angelis, C. van de Bruck, & E. Di Valentino JCAP 12(2023)014

INFLATIONARY PREDICTIONS LIKELIHOOD W. Giarè, M. 1

Covariance matrix Σ and mean value of the parameters μ

MCMC analysis for

 $\Lambda CDM + \alpha_s + r$

Analytical likelihood

W. Giarè, M. De Angelis, C. van de Bruck, & E. Di Valentino JCAP 12(2023)014

DATA

- Planck 2018 temperature and polarisation (TT TE EE) likelihood
- B-modes power spectrum likelihood cleaned for foreground contamination (Bicep/Keck Array Collaboration)

ANALYTICAL LIKELIHOOD

$$\mathscr{L} \propto \exp\left(-\frac{1}{2}\left(\mathbf{x}-\mu\right)^T \mathbf{\Sigma}^{-1}\left(\mathbf{x}-\mu\right)\right), \quad \mathbf{x} \equiv \left(A_s, n_s, \alpha_s, r\right)$$

INFLATIONARY PREDICTIONS Observational constraints

POWER SPECTRUM

- $n_s = 0.9638^{+0.0015}_{-0.0010}$
- r > 0.00332
- $\bullet A_S = (2.112 \pm 0.033) \times 10^{-9}$

PARAMETERS

•
$$\xi < 0.00142$$

• $\alpha = 1.951^{+0.076}_{-0.11} \times 10^{10}$

•
$$\Omega = 0.93^{+0.72}_{-2.8} \times 10^{-5}$$

$$\Omega \equiv \alpha \lambda + \xi^2$$

INFLATIONARY PREDICTIONS Scale invariance VS starobinsky

 n_s and r are anti-correlated like in Starobinsky's model only at fixed ξ . Overall, they are correlated: it is potentially possible to discriminate between the two models!

ns

INFLATIONARY PREDICTIONS Magnetogenesis

Modify the Maxwell's action and add helicity to generate primordial magnetic fields through a sawtooth coupling to the inflaton: EM conformal invariance is broken only during inflation \rightarrow amplification of vector perturbations

C. Cecchini & M. Rinaldi Phys Dar Univ 40 (2023)

$$F_{\mu\nu}F^{\mu\nu} - \gamma F_{\mu\nu}\tilde{F}^{\mu\nu} + \int d^4x \sqrt{-g}\mathscr{L}_E$$

$$I = \begin{cases} \mathscr{C}\left(\frac{a}{a_*}\right)^{\nu_1} & a_i > a > a_* \\ \mathscr{C}\left(\frac{a}{a_*}\right)^{-\nu_2} & a_* > a > a_j \end{cases}$$

INFLATIONARY PREDICTIONS Magnetogenesis

Present-day magnetic field's amplitude and coherence length compatible with bounds on the IGM fields

C. Cecchini & M. Rinaldi Phys Dar Univ 40 (2023)