Black holes and gravitational waves from slow first-order phase transitions

Piotr Toczek, Faculty of Physics, University of Warsaw

> in collaboration with Marek Lewicki and Ville Vaskonen

Slow, supercooled transition

Statistical nature of bubble nucleation inhomogeneitites

Slow, supercooled transition

Statistical nature of bubble nucleation inhomogeneitites

 $\dot{\rho}_r + 4H\rho_r = -\dot{\rho}_v$

Large fluctuations of energy density $\delta = \frac{\rho - \rho_b}{\rho_b}$

Critical scaling law $M(\delta) = \kappa M_k (\delta - \delta_c)^{\gamma}$

$$\delta_c = 0.5$$

During phase transition:

- bubble collisions
- sound waves in plasma

D. Weir, University of Helsinki

During phase transition:

bubble collisions

sound waves in plasma

Second order effects?

scalar induced gravitational waves

Energy density fluctuations

Thank you!

B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, *Rept. Prog. Phys.* **84** (2021) 11, 116902

FIRST-ORDER PHASE TRANSITION

FIRST-ORDER PHASE TRANSITION

FIRST-ORDER PHASE TRANSITION

