Constraining the Cosmic Neutrino Background with NGC 1068

<u>Jack Franklin</u>, Ivan Martinez-Soler, Yuber F.Perez-Gonzalez, Jessica Turner

EuCAPT Annual Symposium 14th May 2024

The Cosmic Neutrino Background

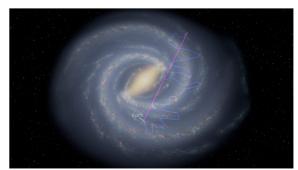
- The universe is filled with a sea of neutrinos
- Neutrinos decouple in the early universe
- ΛCDM: ~300 neutrinos per cm³ left over from the Big Bang
- What we could learn about:
 - Early Universe Physics
 - BSM Neutrino Physics

Relic Neutrino Overabundance

What are the experimental bounds on the CvB?

$$\eta = \frac{n}{(56\,\mathrm{cm}^{-3})}$$

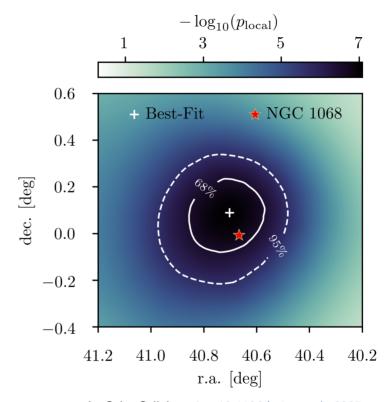
• KATRIN Experiment: $\eta < 1.94 \times 10^{11}$


KATRIN Collaboration, 10.1103/PhysRevLett.129.011806

10.1103/1 HysikevLett.123.011000

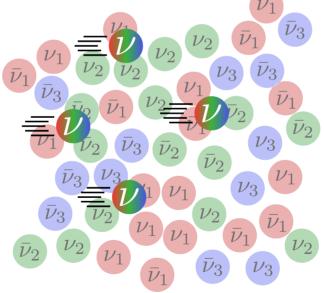
• Cosmic Rays: $\eta \lesssim 10^{11}$

Mar Císcar-Monsalvatje et. al., 2402.00985



NGC 1068

- Galaxy with an active galactic nuclei (AGN)
- Around 14 Mpc from the Milky Way
- Most significant point-source at IceCube



IceCube Collaboration 10.1126/science.abg3395

The Cosmic Neutrino Background

Neutrinos from NGC 1068 are travelling through the CvB

What if they interact with the relic neutrinos?

Transport Equation

Need to solve the transport equation for the flux:

$$\frac{\partial \Phi_i(r, E)}{\partial r} = -\Phi_i(r, E) \sum_j n_j \sigma_{ij}(E) + \sum_j n_k \int_E^{\infty} dE' \Phi_j(r, E') \frac{d\sigma_{jk \to il}}{dE} (E', E)$$

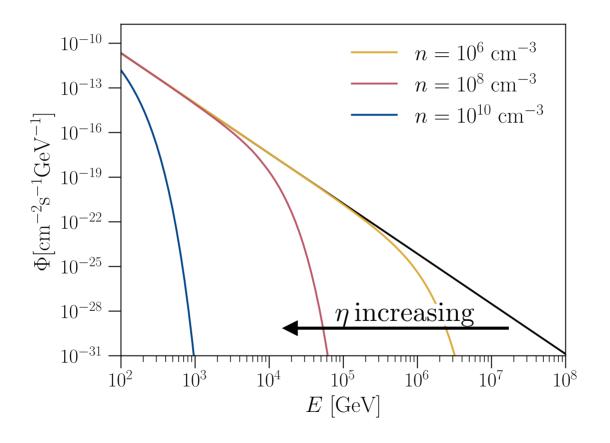
Transport Equation

Need to solve the transport equation for the flux:

$$\frac{\partial \Phi_i(r,E)}{\partial r} = -\Phi_i(r,E) \sum_{j} n_j \sigma_{ij}(E) \quad \begin{array}{l} \Phi: \text{Flux} \\ n: \text{Num. Density} \\ \sigma: \text{SM Cross-Section} \end{array}$$

$$\frac{\text{Depletion Term}}{\text{\cdot $\nu\nu \to \nu\nu$}} \quad \begin{array}{l} \nu_1 \nu_2 \\ \bar{\nu}_1 \\ \bar{\nu}_3 \\ \bar{\nu}_2 \\ \bar{\nu}_1 \end{array} \quad \begin{array}{l} \bar{\nu}_3 \\ \bar{\nu}_3 \\ \bar{\nu}_2 \end{array} \quad \begin{array}{l} \bar{\nu}_1 \\ \bar{\nu}_3 \end{array} \quad \begin{array}{l} \bar{\nu}_3 \\ \bar{\nu}_2 \end{array} \quad \begin{array}{l} \bar{\nu}_1 \\ \bar{\nu}_3 \end{array} \quad \begin{array}{l} \bar{\nu}_3 \\ \bar{\nu}_2 \end{array} \quad \begin{array}{l} \bar{\nu}_1 \\ \bar{\nu}_3 \end{array} \quad \begin{array}{l} \bar{\nu}_3 \\ \bar{\nu}_2 \end{array} \quad \begin{array}{l} \bar{\nu}_1 \\ \bar{\nu}_3 \end{array} \quad \begin{array}{l} \bar{\nu}_3 \\ \bar{\nu}_3 \end{array} \quad \begin{array}{l} \bar{\nu}_2 \\ \bar{\nu}_3 \end{array} \quad \begin{array}{l} \bar{\nu}_3 \\ \bar{\nu}_3$$

Transport Equation

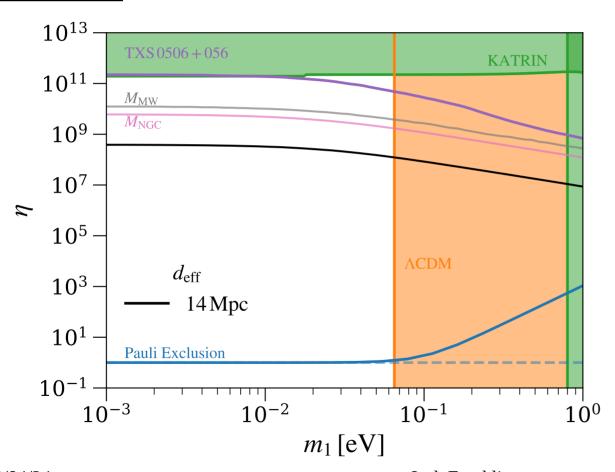

Need to solve the transport equation for the flux:

$$\frac{\partial \Phi_i(r, E)}{\partial r} =$$

$$+ \sum_{j,k,l} n_k \int_{E}^{\infty} dE' \Phi_j(r,E') \frac{d\sigma_{jk\to il}}{dE} (E',E)$$

Regeneration Term
$$=$$
 Upscattering $+$ Downscattering $jk
ightarrow il$

Fluxes at Earth

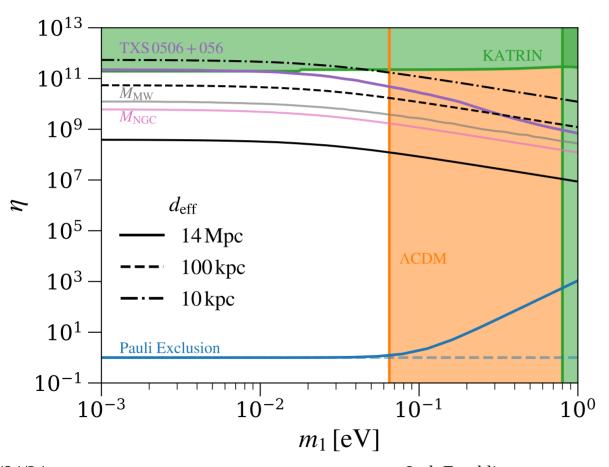


<u>Analysis</u>

Log-likelihood analysis using IceCube public datasets:

$$TS = -2\Delta \log \mathcal{L} = -2 \log \left(\frac{\mathcal{L}(\gamma, \eta, n_s | \mathbf{x}_i, N)}{\mathcal{L}_0} \right)$$

Take power law flux as null hypothesis



95% C.L

• CvB Overdensity:

$$\eta < 3.9 \times 10^8$$

10/04/24 Jack Franklin 11

95% C.L

• CvB Overdensity:

$$\eta < 3.9 \times 10^8$$

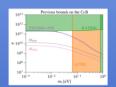
• Local Overdensity:

$$\eta \lesssim 5 \times 10^{11}$$

Conclusion

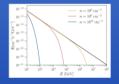
- Direct observation constraints improved by over 2 orders of magnitude!
- A lot of constraining power still available right now with IceCube's improved analysis techniques
- Future improvements from:
 - More events
 - Higher energy neutrinos
- Extension to this work could also constrain neutrino NSIs

If you have any more questions, please come see me at my poster!


Constraints on the CvB from NGC 1068

Durham Yuber F. Perez-Gonzalez, Jessica Turner

$$\eta = \frac{n}{56 \, \text{cm}^{-3}}$$



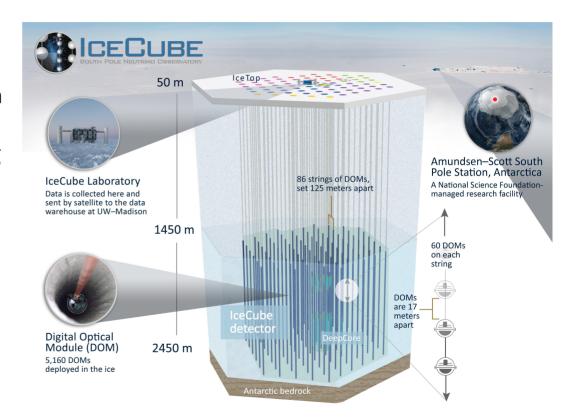
Flux Modelling -

$$\Phi = \Phi_0 \left(\frac{E}{E_0}\right)^{-\gamma}$$
Loca term

NGC 1068:

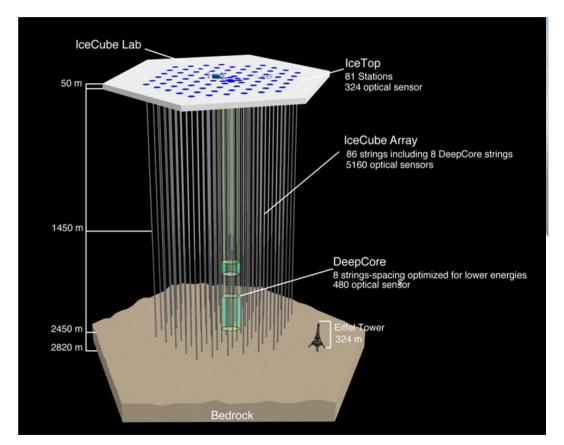
 m_1 [eV]

We performed a log-likelihood analysis on


as more events, especially at higher energies, are detected. They will also benefit from new generation experiments such as IceCube Gen 2.

better than a pure background model.

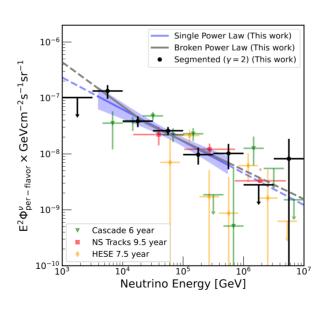
Backup Slides...


The IceCube Experiment

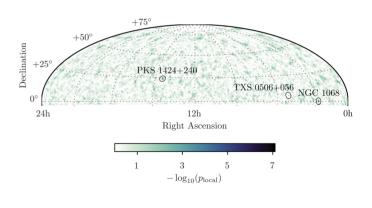
- Neutrino Observatory in Antarctica
- Uses ice as a medium for detecting neutrinos
- Consists of 86 "strings" of lightdetecting modules

The IceCube Experiment

- Neutrino Observatory in Antarctica
- Uses ice as a medium for detecting neutrinos
- Consists of 86 "strings" of lightdetecting modules

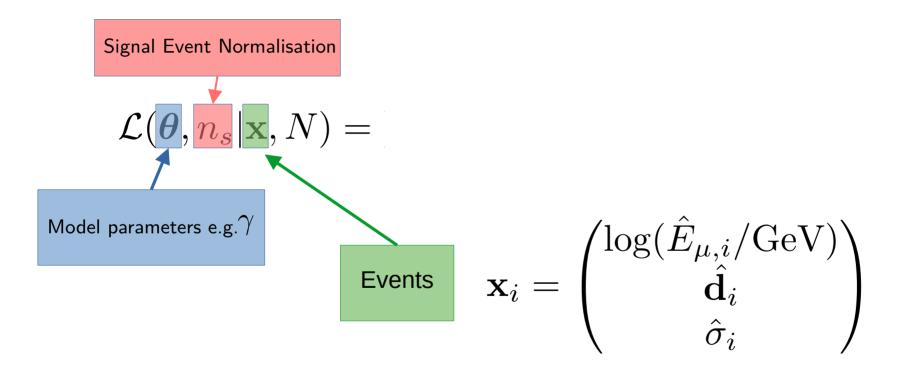

Neutrino Sources at IceCube

Where do the neutrinos that IceCube observes come from?


Atmospheric Neutrinos

Diffuse Astrophysical Neutrinos

Point-source Neutrinos

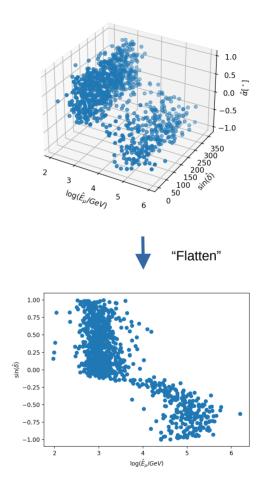


 $\frac{10}{10/04/24}$ MeV ~ PeV

Jack Franklin

100 GeV ~ PeV

Signal Event Normalisation $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{n_s} | \mathbf{x}, N) =$ Model parameters e.g. γ


Signal Event Normalisation
$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{n_s} | \mathbf{x}, N) = \prod_{i=1}^{N} \left(\frac{n_s}{N} f_S(\mathbf{x}_i | \boldsymbol{\theta})\right)$$
 Model parameters e.g.
$$\mathbf{x}_i = \begin{pmatrix} \log(\hat{E}_{\mu,i}/\text{GeV}) \\ \hat{\mathbf{d}}_i \\ \hat{\sigma}_i \end{pmatrix}$$

Signal PDF Background PDF
$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{n_s} | \mathbf{x}, N) = \prod_{i=1}^{N} \left(\frac{n_s}{N} f_S(\mathbf{x}_i | \boldsymbol{\theta}) + \left(1 - \frac{n_s}{N}\right) f_B(\mathbf{x}_i)\right)$$
 Model parameters e.g.?
$$\mathbf{x}_i = \begin{pmatrix} \log(\hat{E}_{\mu,i}/\text{GeV}) \\ \hat{\mathbf{d}}_i \\ \hat{\sigma}_i \end{pmatrix}$$

Probability Density Functions

- Background events have no dependence on right ascension
- $^-$ There are $\sim\!100,\!000$ events, of which $<\!100$ are signal
- The background pdf ~ pdf of all events

$$f_B(\hat{E}_{\mu,i},\hat{\mathbf{d}}_{\mathbf{i}},\hat{\sigma}_i) = \frac{1}{2\pi} f_B(\hat{E}_{\mu,i},\sin\hat{\delta}_i)$$

Probability Density Functions

$$f_S(\hat{E}_{\mu,i}, \hat{d}_i, \hat{\sigma}_i | \sin \delta_{\rm src}, \theta) \approx \frac{1}{2\pi\hat{\psi}_i} f_S(\hat{\psi}_i | \hat{E}_{\mu,i}, \sigma_i, \theta) \times f_S(\hat{E}_{\mu,i} | \sin \delta_{\rm src}, \theta)$$

Probability Density Functions

$$f_S(\hat{E}_{\mu,i}, \hat{d}_i, \hat{\sigma}_i | \sin \delta_{\rm src}, \theta) \approx \frac{1}{2\pi \hat{\psi}_i} f_S(\hat{\psi}_i | \hat{E}_{\mu,i}, \sigma_i, \theta) \times f_S(\hat{E}_{\mu,i} | \sin \delta_{\rm src}, \theta)$$

Rayleigh Distribution

10/04/24 Jack Franklin 25

Probability Density Functions

$$f_{S}(\hat{E}_{\mu,i}, \hat{d}_{i}, \hat{\sigma}_{i} | \sin \delta_{\rm src}, \theta) \approx \frac{1}{2\pi\hat{\psi}_{i}} f_{S}(\hat{\psi}_{i} | \hat{E}_{\mu,i}, \sigma_{i}, \theta) \times f_{S}(\hat{E}_{\mu,i} | \sin \delta_{\rm src}, \theta)$$

$$f_{S}(\hat{E}_{\mu,i} | \sin \delta_{\rm src}, \theta) = \int dE_{\nu} f(E_{\nu} | \sin \delta_{\rm src}, \theta) f(\hat{E}_{\mu,i} | E_{\nu}, \sin \delta_{\rm src})$$

NGC1068

• Our best fit values (2.9σ) :

$$n_s = 29.6, \gamma = 3.37$$

• New IC method results (5σ) :

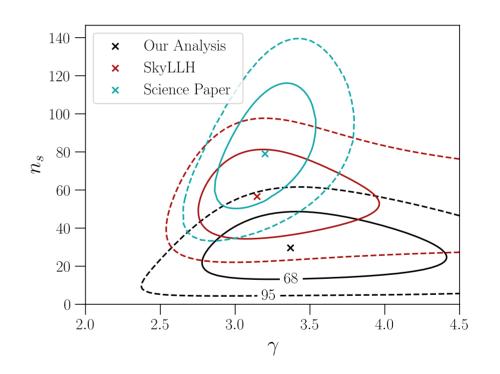
$$n_s = 79, \gamma = 3.2$$

The Cosmic Neutrino Background

Could they interact?

Mean free path:
$$\lambda = \frac{1}{n\sigma}$$
 , $\sigma pprox G_F^2 s = 2 G_F^2 E_{
u} m_{
u}$

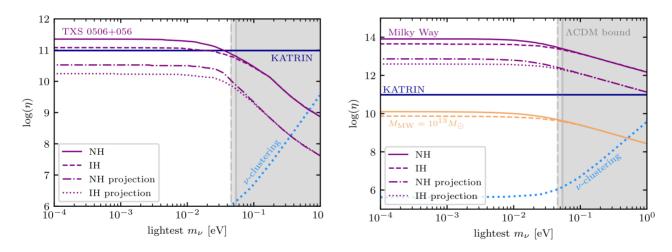
$$\frac{L}{\lambda} \approx 1.5 \times 10^{-8} \left(\frac{L}{14.4 \,\mathrm{Mpc}}\right) \left(\frac{n}{56 \,\mathrm{cm}^{-3}}\right) \left(\frac{E_{\nu}}{1 \,\mathrm{TeV}}\right) \left(\frac{m_{\nu}}{1 \,\mathrm{meV}}\right)$$


Point Source Analysis Results

Science Paper:

- New data
- Better energy reconstruction
- More accurate pdfs

SkyLLH:


• Includes data pre IC86II

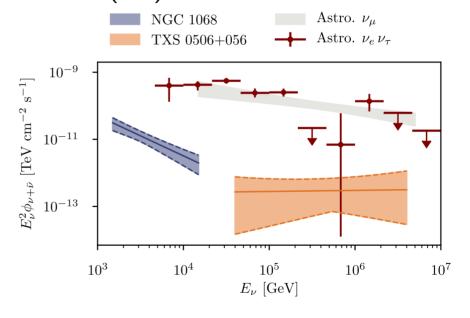
Relic Neutrino Overabundance

What are the experimental bounds on the CvB?

$$\eta = \frac{n}{(56\,\mathrm{cm}^{-3})}$$

Mar Císcar-Monsalvatje et. al., 2402.00985

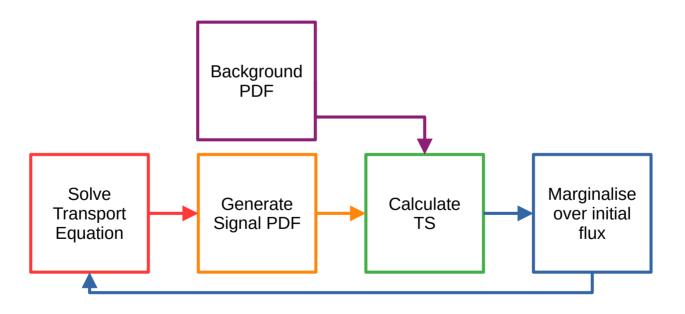
Initial Flux

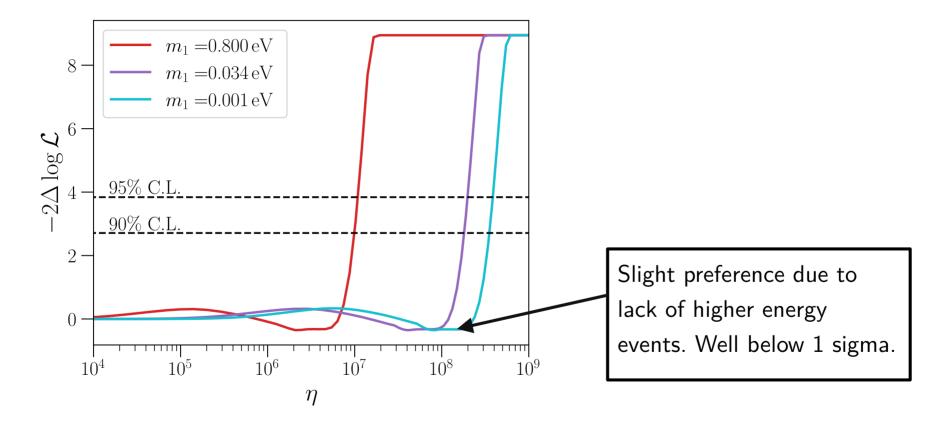

• Parametrise Initial Flux with a Power Law (PL):

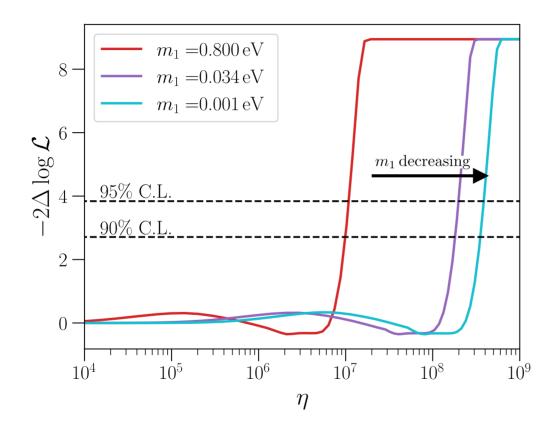
$$\Phi = \Phi_0 \left(\frac{E}{E_0}\right)^{-\gamma}$$

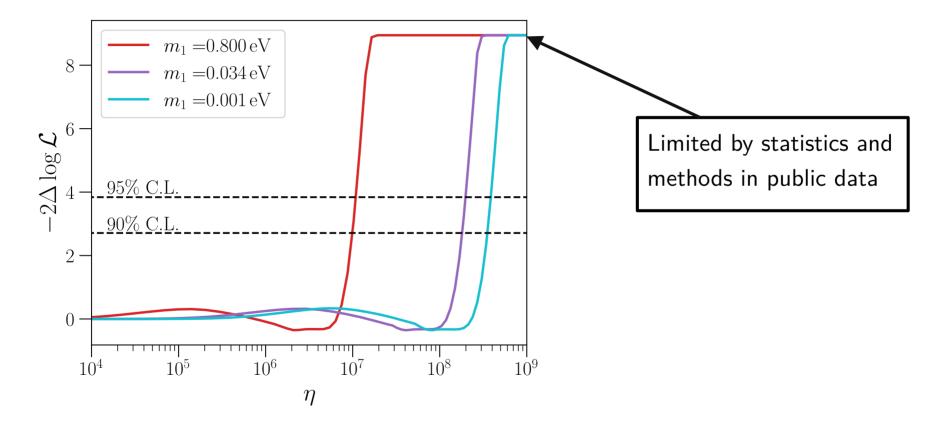
 Φ_0 : Normalisation at E_0

 E_0 : Reference energy (1 TeV)


 γ : Spectral index




IceCube Collaboration 10.1126/science.abg3395


<u>Analysis</u>

$$TS = -2\Delta \log \mathcal{L} = -2 \log \left(\frac{\mathcal{L}(\gamma, \eta, n_s | \mathbf{x}_i, N)}{\mathcal{L}_0} \right)$$

