New Bounds on Monopoles from **Cosmic Magnetic Fields**

DP, T. Kobayashi Phys. Rev. D 106 (2022) 6, 063016

DP, K. Bondarenko, M. Doro, T. Kobayashi arXiv:2401.00560

> DP, M. Doro, T. Kobayashi arXiv:2406.xxxxx

> > EuCAPT 2024 - 14/05/24

SISSA

Speaker: Daniele Perri

Istituto Nazionale di Fisica Nucleare

Can a Monopole Really Exist?

- In 1948 Dirac was the first to suppose the existence of magnetic monopoles as semi-infinite string solenoids.
- The existence of magnetic monopoles is consistent with quantum theory once imposed the charge quantization condition:

• In 1974 'T Hooft and Poliakov proposed a model of monopoles as topological defects linked to non-trivial second homotopy groups of the vacuum manifold:

$$G \to H, \ \pi_2(G/H) \neq I$$

Daniele Perri, SISSA

 $g = 2\pi n/e = ng_{\rm D}$

Monopoles are *inevitable predictions* of Grand Unified Theories

Magnetic fields and Parker Bounds

- In 1970 Parker proposed a bound on the monopole flux from the observation of the Galactic magnetic fields:
 - The Galactic magnetic fields accelerate the monopoles losing their energy;
 - The survival of the fields provides a bound on the monopole flux today.

 $\frac{\rho_{\rm B}}{\rho_{\rm B}} = -\Pi_{\rm red} - \Pi_{\rm acc}$

 $\Pi_{\rm red}(t) = 4H(t)$

An analogous of the Parker bound can be derived from primordial magnetic fields.

Long, Vachaspati (2015) arXiv:1504.03319

$$\Pi_{\rm acc}(t) = \frac{4g}{B(t)}v(t)n(t)$$

Daniele Perri, SISSA

Magnetic fields and Parker Bounds

The primordial magnetic fields survive under the condition $\Pi_{acc}/\Pi_{red} \lesssim 1$.

Daniele Perri, SISSA

Acceleration in Intergalactic Magnetic Fields

In literature the monopole velocity on Earth is usually assumed to be comparable to the MW peculiar velocity ~ 10^{-3} .

However intergalactic and Galactic magnetic fields accelerate the monopoles:

$$m\frac{d}{dt}(\gamma v) = gB$$

Monopoles can be accelerated to relativistic velocities!

Modification of Galactic Parker bounds

Galactic Parker bounds depend on the monopole incident velocity on the Milky Way.

The bounds are weakened for very large values of the monopole velocity:

The Galactic bound is not affected by 1. acceleration in intergalactic magnetic fields.

The seed Galactic bound is strongly affected 2. by the acceleration.

Daniele Perri, SISSA

Recasting bounds from experiments

Monopole acceleration drastically affects the bounds on the flux (search with cosmic rays detectors!) Daniele Perri, SISSA

- Many experiments (ex. IceCube, Auger) put bounds in terms of the velocity at the detector.
- The bounds can be recasted in terms of the mass once an acceleration mechanism is fixed.

Thank You!!

Istituto Nazionale di Fisica Nucleare

