FAST ION ACCELERATION IN 3D HYBRID SIMULATIONS OF QUASI-PERPENDICULAR SHOCKS

Luca Orusa Based on L. Orusa, D. Caprioli *PRL* 131, 095201 (2023) 4th EuCAPT Annual Symposium, 14/05/2024

Agenzia Spaziale Italiana

Particle acceleration at non-relativistic shocks

- Understanding particle acceleration at non-relativistic shocks is important for the origin of CRs.
- Energization via first order Fermi acceleration.
- Wide range of Mach numbers (Alfvénic $M_A = v_{sh}/v_A \rightarrow M$) and relative inclination (θ) between the shock velocity and the unperturbed B_0 .

NASA/JPL-Caltech/CXC/Calar Alto O. Krause

2

Kinetic simulations

- PIC simulations: consist in iteratively moving particles on a grid according to the Lorentz force and selfconsistently adjusting the electromagnetic fields.
- Hybrid simulations treat e^- as a massless neutralizing fluid and ions as particles.
- No self-consistent kinetic simulation has reported large non-thermal tails of ions at quasi-perpendicular shocks ($\theta \sim 80^{\circ}$).

Measurements of efficient particle acceleration at quasi-perpendicular shocks

- •SN1006 shows a bilateral symmetry, correlated with the geometry of the background magnetic field.
- •Observations of SN1006 show a radio emission azimuthally symmetric (electrons at GeV energies).
- •Measurements of efficient ion acceleration in the quasi-perpendicular regions of Earth's Bow Shock $(\theta > 45^{\circ}, M < 20).$

EuCAPT 2024

2D and 3D simulations

- •2D-3D simulations (dHybrid, Gargaté et al. 2007) $\theta = 80^{\circ}$.
- •2D in-plane: downstream magnetic field amplification.
- •3D simulation: structures in the downstream similar to 2D in plane.

10

5

5

10

2D and 3D simulations spectra

Phenomenological implications

- We found large ion acceleration in kinetic simulation of quasiperpendicular shocks for the first time. Also *e*⁻ should be injected.
- e^- acceleration at $\theta = 80^\circ$ could explain the radio emission ($e^$ at GeV energies) detected from SN 1006 ($M \sim 100$).
- Mechanism consistent with measurements of efficient ion acceleration at the Earth's Bow Shock (for $\theta > 45^{\circ}$, $M < 20, \epsilon \lesssim 10^{\circ}$).

