Stochastic modelling of cosmic ray sources sped up

ANTON STALL, CHUN KHAI LOO, LEONARD KAISER, PHILIPP MERTSCH

INSTITUTE FOR THEORETICAL PARTICLE PHYSICS AND COSMOLOGY (TTK), RWTH AACHEN

4th EuCAPT Annual Symposium 14 May, 2024 CERN, Meyrin, Switzerland

Cosmic ray sources

Long-standing questions

What are the sources of cosmic rays?

How can galactic cosmic rays reach PeV energies?

How do cosmic rays **escape** their sources?

Cosmic Ray Spectrum

How do we deal with our limited knowledge?

How do we deal with our limited knowledge?

Examples for stochasticity studies:

- High energy electrons
 - e.g. [Mertsch'18]
- Low energy cosmic rays e.g. [Phan'23]
- High energy protons
 - e.g. [Genolini'17]

Source modelling

Solve cosmic ray transport equation for point source (Green's function)

 $\mathcal{L}[G](t, \mathbf{x}, \mathcal{R}; t_i, \mathbf{x}_i) = \delta(t - t_i) \,\delta(\mathbf{x} - \mathbf{x}_i) \,Q(\mathcal{R}) + \text{boundary condition}$

Source modelling

Add contributions from sources with randomly drawn positions \mathbf{x}_i and ages t_i

• flux at position **x**₀ and time t₀ is calculated as sum over all source contributions:

$$\Phi = \sum_{i=1}^{N} G\left(t_0, \mathbf{x}_0, \mathcal{R}; t_i, \mathbf{x}_i\right)$$

each contribution calculated the same way

contributions can be calculated in **parallel**

Young sources, that are not fully evolved, contribute with pronounced jump-like features!

Would we detect those if this was the correct escape model?

Results of stochastic modelling

Summary and Outlook

- **1. Individual sources** must be considered for the realistic modelling.
- 2. Computations can potentially be accelerated using GPUs.
- **3. Local measurements** can be used to **constrain source properties.**
- **4. Stochasticity** in galactic diffuse emissions can be **quantified**.

PoS(ICRC2023)687

Summary and Outlook

- **1. Individual sources** must be considered for the realistic modelling.
- 2. Computations can potentially be accelerated using GPUs.
- **3. Local measurements** can be used to **constrain source properties.**
- **4. Stochasticity** in galactic diffuse emissions can be **quantified**. Thank you!

Backup

Modelling of cosmic rays

Source modelling

Solve cosmic ray transport equation for point source (Green's function)

$$\mathcal{L}[G](t, \mathbf{x}, \mathcal{R}; t_i, \mathbf{x}_i) = \\ \delta(t - t_i) \,\delta(\mathbf{x} - \mathbf{x}_i) \,Q(\mathcal{R})$$

+ boundary condition

 $\mathcal{R} = \frac{pc}{Ze}$

Add contributions from sources with randomly drawn positions **x**_i and ages t_i

$$\Phi = \sum_{i=1}^{N} G\left(t_0, \mathbf{x}_0, \mathcal{R}; t_i, \mathbf{x}_i\right)$$

Results for the stochastic proton spectrum

Stochastic proton spectrum

The average is consistent with the corresponding smooth model, but fluctuations occur.

Fluctuations are larger at higher energies/rigidities.

Features in PV protons are relevant for galactic diffuse

 γ and ν at 100 TeV.