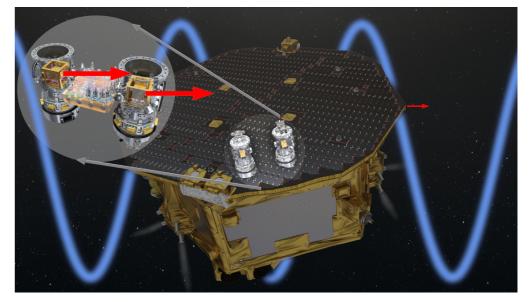
Riding the Dark Matter Wave

Novel limits on general dark photons from LISA Pathfinder


JF, Joerg Jaeckel, Felix Kahlhoefer, Kai Schmidt-Hoberg

2310.06017

Jonas Frerick (jonas.frerick@desy.de)

4th EuCAPt Annual Symposium

15.05.24, CERN

ESA/ATG medialab

1.) Coupling beyond kinetic mixing

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{\epsilon_{\rm KM}}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{m_{\rm DM}^2}{2} A'_{\mu} A'^{\mu} - \epsilon_g e A'_{\mu} J^{\mu}_g$$

2.) Field effectively classical with large coherence length

$$\mathbf{A}(t,x) = \mathbf{A}_{\mathrm{DM}} e^{-i\omega t + i\mathbf{k}\cdot\mathbf{x} + \phi_0}$$

$$\mathbf{a}(t) \simeq i\omega \epsilon_g e \frac{q}{M} \mathbf{A}_{\mathrm{DM}} e^{-i\omega t} = i\epsilon_g e \frac{q}{M} \sqrt{2\rho_{\mathrm{DM}}} \,\hat{\mathbf{e}}_A \, e^{-i\omega t}$$

1.) Coupling beyond kinetic mixing

$$\mathcal{L} \supset -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{\epsilon_{\rm KM}}{2}F'_{\mu\nu}F^{\mu\nu} + \frac{m_{\rm DM}^2}{2}A'_{\mu}A'^{\mu} - \epsilon_g e A'_{\mu}J^{\mu}_g \longrightarrow \text{B-L}$$

2.) Field effectively classical with large coherence length

$$\mathbf{A}(t,x) = \mathbf{A}_{\mathrm{DM}} e^{-i\omega t + i\mathbf{k}\cdot\mathbf{x} + \phi_0}$$

$$\mathbf{a}(t) \simeq i\omega \epsilon_g e \frac{q}{M} \mathbf{A}_{\mathrm{DM}} e^{-i\omega t} = i\epsilon_g e \frac{q}{M} \sqrt{2\rho_{\mathrm{DM}}} \,\hat{\mathbf{e}}_A \, e^{-i\omega t}$$

1.) Coupling beyond kinetic mixing

$$\mathcal{L} \supset -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{\epsilon_{\rm KM}}{2}F'_{\mu\nu}F^{\mu\nu} + \frac{m_{\rm DM}^2}{2}A'_{\mu}A'^{\mu} - \epsilon_g e A'_{\mu}J^{\mu}_g \longrightarrow \text{B-L}$$

2.) Field effectively classical with large coherence length

$$\mathbf{A}(t,x) = \mathbf{A}_{\mathrm{DM}} e^{-i\omega t + i\mathbf{k}\cdot\mathbf{x} + \phi_0}$$

$$\omega \approx m_{\mathrm{DM}} \qquad |\mathbf{k}| = m_{\mathrm{DM}}|\mathbf{v}| \ll m_{\mathrm{DM}}$$

$$\mathbf{a}(t) \simeq i\omega \epsilon_g e \frac{q}{M} \mathbf{A}_{\mathrm{DM}} e^{-i\omega t} = i\epsilon_g e \frac{q}{M} \sqrt{2\rho_{\mathrm{DM}}} \,\hat{\mathbf{e}}_A \, e^{-i\omega t}$$

1.) Coupling beyond kinetic mixing

$$\mathcal{L} \supset -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{\epsilon_{\rm KM}}{2}F'_{\mu\nu}F^{\mu\nu} + \frac{m_{\rm DM}^2}{2}A'_{\mu}A'^{\mu} - \epsilon_g e A'_{\mu}J^{\mu}_g \longrightarrow \text{B-L}$$

2.) Field effectively classical with large coherence length

$$\mathbf{A}(t,x) = \mathbf{A}_{\mathrm{DM}} e^{-i\omega t + i\mathbf{k} \cdot \mathbf{v}} \phi_0$$

$$\omega \approx m_{\mathrm{DM}} \qquad |\mathbf{k}| = m_{\mathrm{DM}} |\mathbf{v}| \ll m_{\mathrm{DM}}$$

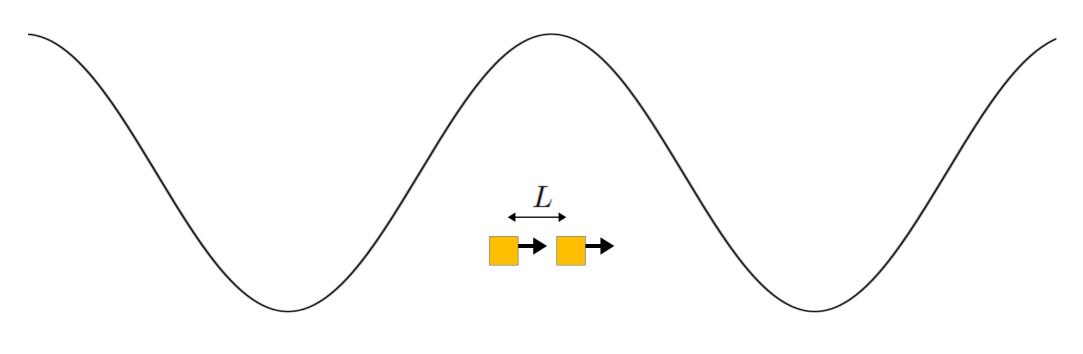
$$\mathbf{a}(t) \simeq i\omega \epsilon_g e \frac{q}{M} \mathbf{A}_{\mathrm{DM}} e^{-i\omega t} = i\epsilon_g e \frac{q}{M} \sqrt{2\rho_{\mathrm{DM}}} \,\hat{\mathbf{e}}_A \, e^{-i\omega t}$$

1.) Coupling beyond kinetic mixing

$$\mathcal{L} \supset -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{\epsilon_{\rm KM}}{2}F'_{\mu\nu}F^{\mu\nu} + \frac{m_{\rm DM}^2}{2}A'_{\mu}A'^{\mu} - \epsilon_g e A'_{\mu}J^{\mu}_g \longrightarrow \text{B-L}$$

2.) Field effectively classical with large coherence length

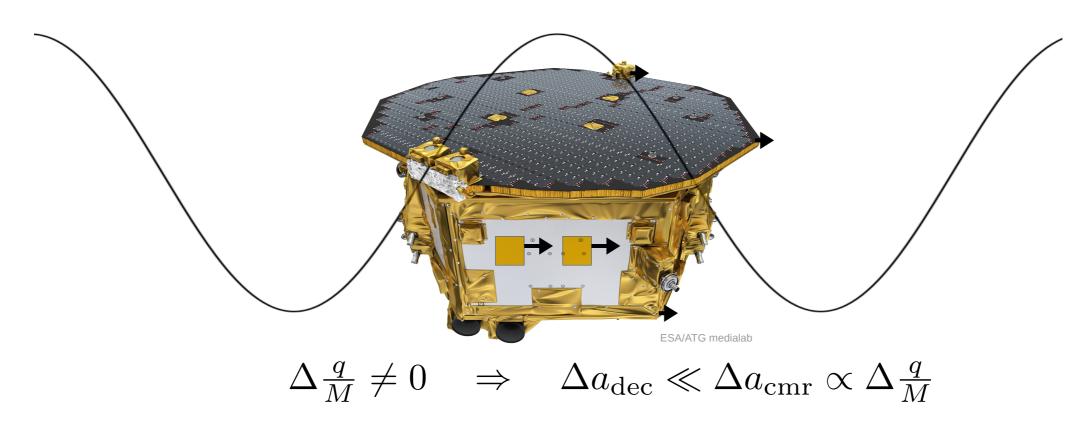
$$\mathbf{A}(t,x) = \mathbf{A}_{\mathrm{DM}} e^{-i\omega t + i\mathbf{k} \cdot \mathbf{v}} \phi_0$$


$$\omega \approx m_{\mathrm{DM}} \qquad |\mathbf{k}| = m_{\mathrm{DM}} |\mathbf{v}| \ll m_{\mathrm{DM}}$$

$$\mathbf{a}(t) \simeq i\omega \epsilon_g e \frac{q}{M} \mathbf{A}_{\mathrm{DM}} e^{-i\omega t} = i\epsilon_g e \frac{q}{M} \sqrt{2\rho_{\mathrm{DM}}} \,\,\hat{\mathbf{e}}_A \,\, e^{-i\omega t}$$
$$\rho_{\mathrm{DM}} = \frac{1}{2} \omega^2 |\mathbf{A}_{\mathrm{DM}}|^2$$

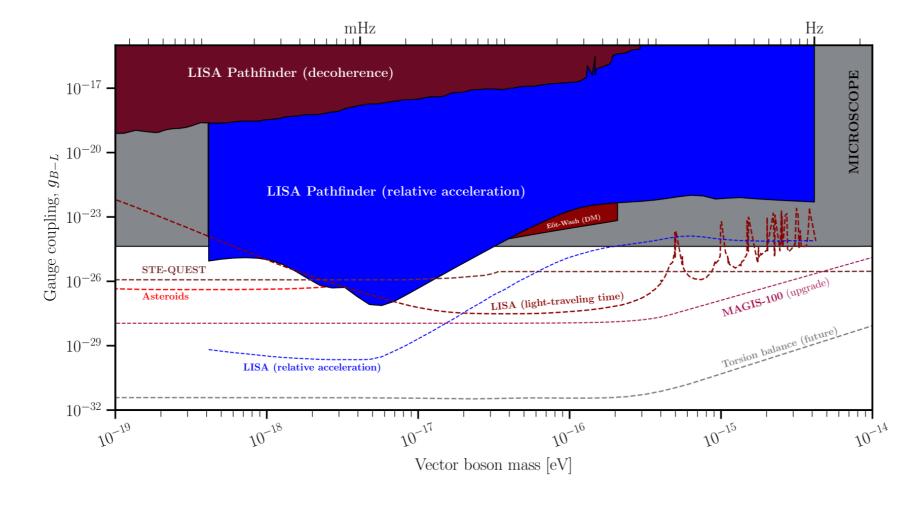
The big issue with a small experiment

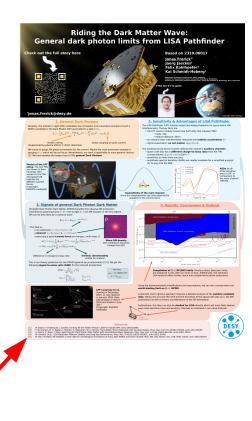
LPF region of sensitivity $10^{-3} \, \mathrm{Hz} \approx 4 \cdot 10^{-17} \, \mathrm{eV} \Rightarrow \lambda_c \approx 3 \cdot 10^{11} \, \mathrm{km}$



$$\Delta \frac{q}{M} = 0 \quad \Rightarrow \quad \Delta a_{\rm dec} \propto \frac{L}{\lambda_c} \simeq v m_{\rm DP} L$$

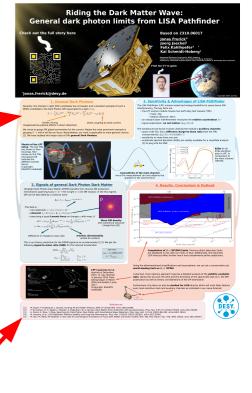
Decoherence method


The big issue with a small experiment and how to solve it


LPF region of sensitivity $10^{-3} \, \mathrm{Hz} \approx 4 \cdot 10^{-17} \, \mathrm{eV} \Rightarrow \lambda_c \approx 3 \cdot 10^{11} \, \mathrm{km}$

Differing charge-to-mass ratio method

Results


Thank you for your attention!

Check out my poster for more details

Results

Nobel prize for the most iconic ironic final slide

Nobel prize for the best poster

Thank you for your attention!

Check out my poster for more details