X-rays constraints on sub-GeV dark matter

Based on:

Cirelli, Fornengo, JK, Pinetti & Roach, JCAP '23 [arXiv:2303.08854] Balaji, De La Torre Luque , JK, '23 [arXiv:2311.04979] (accepted to ApJ)

> Jordan Koechler LPTHE, Sorbonne University, Paris

> > 4th EuCAPT Symposium

DM SM DM SM

Main challenges for sub-GeV DM ID

• <u>Issue 1</u>: when DM produces e^{\pm} Solar screening suppresses the flux

ID DM SM

Indirect detection

Main challenges for sub-GeV DM ID

- <u>Issue 1</u>: when DM produces e^{\pm} Solar screening suppresses the flux
- What to do?
 - Look at Voyager 1 & 2 data!

D M SM DM SM

Indirect detection

Main challenges for sub-GeV DM ID

- <u>Issue 1</u>: when DM produces e^{\pm} Solar screening suppresses the flux
- What to do?
 - Look at Voyager 1 & 2 data!
 - Look for DM-produced γ -rays

Main challenges for sub-GeV DM ID

 Issue 2: when DM produces γ
 No sensitive enough observatories at MeV energies

Main challenges for sub-GeV DM ID

- Issue 2: when DM produces γ
 No sensitive enough observatories at MeV energies
- Secondary emissions allow to circumvent the issue → study X-rays signals from light DM

Cirelli et al., Phys. Rev. D. '21 [arXiv:2007.11493]

[arXiv:1611.02232]

Main challenges for sub-GeV DM ID

- Issue 2: when DM produces γ
 No sensitive enough observatories at MeV energies
- Secondary emissions allow to circumvent the issue → study X-rays signals from light DM

Cirelli et al., Phys. Rev. D. '21 [arXiv:2007.11493]

Inverse-Compton scattering!

Adapted from eASTROGAM coll., *Exper.Astron.* '17 [arXiv:1611.02232]

X-rays from sub-GeV DM

Propagation of DM-produced e^{\pm} using DRAGON2

X-rays from sub-GeV DM

Propagation of DM-produced e^{\pm} using DRAGON2

Analysis

• In this study we keep a **conservative** approach:

$$\chi_{>}^{2}(p, m_{DM}) = \sum_{i \in \text{bins}} \frac{\text{Max}(\Phi_{DM\gamma,i}(p, m_{DM}) - \Phi_{i}, 0)^{2}}{\sigma_{i}^{2}}$$
$$p = \langle \sigma v \rangle, \Gamma$$

- Impose a (2σ) bound when $\chi^2_>(p, m_{DM}) \ge 4$
- Using XMM-Newton diffuse emission data

Results

<u>Diffuse γ-rays:</u> Essig et al., *JHEP* '13 [arXiv:1309.4091] <u>Voyager 1:</u> Boudaud et al., *Phys.Rev.Lett.* '17 [arXiv:1612.07698] <u>Leo T gas heating:</u> Wakedar and Wang, *Phys.Rev.D* '22 [arXiv:2111.08025] <u>CMB:</u> Slatyer, *Phys.Rev.D* '16 [arXiv:1506.03811] Lopez-Honorez et al., *JCAP* '13 [arXiv:1303.5094] Liu et al., *Phys.Rev.D* '16 [arXiv:1604.02457]

Results

Halo height	H	$8.00^{+2.35}$ kpc
Norm of Diffusion coeff	D_{0}	$1.02^{+0.12} \times 10^{29} \text{ cm}^2 \text{s}^{-1}$
Norm rigidity	D_0	$1.02_{-0.10} \times 10^{\circ} \text{ cm s}$
Diffusion on estual in dem	<u> </u>	
Diffusion spectral index	0	0.49 ± 0.01
β exponent	η	$-0.75^{+0.00}_{-0.07}$
Alfvén velocity	v_A	$13.40^{+0.90}_{-1.02}$ km/s
Break rigidity	R_b	$312\pm31~{ m GV}$
Index break	$\Delta \delta$	0.20 ± 0.03
Smooth. param.	s	0.04 ± 0.0015

DM profiles:

- NFW
- Burkert
- cNFW with $\gamma = 1.26$

Prospects

- Things to explore:
 - Look at p-wave annihilation $\langle \sigma v \rangle = \langle \sigma v \rangle_s + \langle \sigma v \rangle_p v^2 + \mathcal{O}(v^4)$

Prospects

- Things to explore:
 - Look at p-wave annihilation $\langle \sigma v \rangle = \langle \sigma v \rangle_s + \langle \sigma v \rangle_p v^2 + \mathcal{O}(v^4)$
 - PBH evaporation Balaji, De La Torre Luque , JK (to appear)

Prospects

- Things to explore:
 - Look at p-wave annihilation $\langle \sigma v \rangle = \langle \sigma v \rangle_s + \langle \sigma v \rangle_p v^2 + \mathcal{O}(v^4)$
 - PBH evaporation Balaji, De La Torre Luque , JK (to appear)
 - Test BSM models that provide a light DM candidate:
 1) Injection spectra of e[±] from DM annihilation/decay channels
 2) Branching ratios
 3) Expression of (σv) or Γ as a function of the couplings

Thank you for your attention!